Области применения трансформатора



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Области применения трансформатора



Введение

Трансформатор (от лат. transformo — преобразовывать) — статическое (не имеющее подвижных частей) электромагнитное устройство, предназначенное для преобразования посредством электромагнитной индукции системы переменного тока одного напряжения в систему переменного тока обычно другого напряжения при неизменной частоте и без существенных потерь мощности.

Трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток, охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала.

Для создания трансформаторов необходимо было изучение свойств материалов: неметаллических, металлических и магнитных, создания их теории

Столетов Александр Григорьевич (профессор МУ) сделал первые шаги в этом направлении - обнаружил петлю гистерезиса и доменную структуру ферромагнетика (80-е).

Братья Гопкинсоны разработали теорию электромагнитных цепей

В 1831 году английским физиком Майклом Фарадеем было открыто явление электромагнитной индукции, лежащее в основе действия электрического трансформатора, при проведении им основополагающих исследований в области электричества.

Схематичное изображение будущего трансформатора впервые появилось в 1831 году в работах Фарадея и Генри. Однако ни тот, ни другой не отмечали в своём приборе такого свойства трансформатора, как изменение напряжений и токов, то есть трансформирование переменного тока.

 


В 1848 году французский механик Г. Румкорф изобрёл индукционную катушку. Она явилась прообразом трансформатора

30 ноября 1876 года, дата получения патента Яблочковым Павлом Николаевичем, считается датой рождения первого трансформатора. Это был трансформатор с разомкнутым сердечником, представлявшим собой стержень, на который наматывались обмотки.

Первые трансформаторы с замкнутыми сердечниками были созданы в Англии в 1884 году братьями Джоном и Эдуардом Гопкинсон

С изобретением трансформатора возник технический интерес к переменному току. Русский электротехник Михаил Осипович Доливо-Добровольский в 1889 г. предложил трёхфазную систему переменного тока, построил первый трёхфазный асинхронный двигатель и первый трёхфазный трансформатор. На электротехнической выставке во Франкфурте-на-Майне в 1891 г. Доливо-Добровольский демонстрировал опытную высоковольтную электропередачу трёхфазного тока протяжённостью 175 км трёхфазный генератор, имеющий мощность 230 КВт при напряжении 95 В.

1928 год можно считать началом производства силовых трансформаторов в СССР, когда начал работать Московский трансформаторный завод (впоследствии — Московский электрозавод).

В начале 1900-х годов английский исследователь-металлург Роберт Хедфилд провёл серию экспериментов для установления влияния добавок на свойства железа. Лишь через несколько лет ему удалось поставить заказчикам первую тонну трансформаторной стали с добавками кремния.

Следующий крупный скачок в технологии производства сердечников был сделан в начале 30-х годов XX в, когда американский металлург Норман П. Гросс установил, что при комбинированном воздействии проката и нагревания у кремнистой стали появляются незаурядные магнитные свойства


в направлении прокатки: магнитное насыщение увеличивалось на 50 %, потери на гистерезис сокращались в 4 раза, а магнитная проницаемость возрастала в 5 раз.

Базовые принципы действия трансформатора

Работа трансформатора основана на двух базовых принципах:

1. Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм)

2. Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция)

На одну из обмоток, называемую первичной обмоткой, подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток создаёт переменный магнитный поток в магнитопроводе, сдвинутый по фазе, при синусоидальном токе, на 90° по отношению к току в первичной обмотке. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку.

В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать.


Холостой ход трансформатора

Опыт холостого хода трансформатора

Холостым ходом трансформатора является такой предельный режим работы, когда его вторичная обмотка разомкнута и ток вто­ричной обмотки равен нулю (I2 = 0). Опыт холостого хода позволяет определить коэффициент трансформации, ток, потери и сопротивление холостого хода трансформатора.

При опыте холостого хода первичную обмотку однофазного трансформатора включают в сеть переменного тока на номинальное напряжение U1.

Под действием приложенного напряжения по обмотке протекает ток I1=I0 равный току холостого хода. Практически ток холостого хода равен примерно 5—10% номинального, а в трансформаторах малой мощности (десятки вольт-ампер) достигает значений 30% и более номинального. Для измерения тока холостого хода, приложенного к первичной обмотке напряжения и потребляемой мощности в цепь первичной обмотки трансформатора включены измерительные приборы (амперметр А, вольтметр V и ваттметр W). Вторичная обмотка трансформатора замкнута на вольтметр, сопротивление которого очень велико, так что ток вторичной обмотки практически равен нулю.

Ток холостого хода возбуждает в магнитопроводе трансформатора магнитный поток, который индуктирует э. д. с. Е1 и Е2 в первичной и во вторичной обмотках.

Во вторичной обмотке трансформатора нет тока и, следовательно, нет падения напряжения в сопротивлении этой обмотки, поэтому э. д. с. равна


напряжению, т. е. Е2=1/2. Поэтому э. д. с. вторичной обмотки определяется показанием вольтметра, включенного в эту обмотку.

Ток холостого хода, протекающий в первичной обмотке, очень мал по сравнению с номинальным, так что падение напряжения в сопротивлении первичной обмотки очень мало по сравнению с приложенным напряжением. Поэтому приложенное напряжение практически уравновешивается э. д. с. первичной обмотки и численные значения напряжения V и э. д. с. Е приблизительно равны. Следовательно, при опыте холостого хода э. д. с. первичной обмотки определится показанием вольтметра, включенного в ее цепь.

Для большей точности измерения при опыте холостого хода первичной обмоткой служит обмотка низшего напряжения, а вторичной — обмотка высшего напряжения. Это объясняется тем, что для обмотки НН номинальный ток будет больше, чем для обмотки ВН. Так как ток холостого хода небольшой и составляет несколько процентов номинального, то при использовании обмотки НН в качест­ве первичной ток холостого хода окажется больше и может быть измерен более точно, чем в случае использования обмотки ВН в ка­честве первичной.

Имея в виду равенства E2=U2 и E1~U1 коэффициент транс­формации можно определить отношением э. д. с. или чисел витков обмоток. Таким образом, при холостом ходе трансформатора коэффици­ент трансформации определится отношением показателей вольтмет­ров, включенных в первичной и вторичной обмотках.

Для трехфазного трансформатора различают фазный и линей­ный коэффициенты трансформации. Фазный коэффициент транс­формации определяет соотношение чисел витков обмоток ВН и НН и равен отношению фазных напряжений. Линейный коэффициент трансформации равен отношению линейных напряжений на стороне ВН и НН.


Если схемы соединения обмоток ВН и НН одинаковы (напри­мер, звезда — звезда или треугольник — треугольник), отношения фазных и линейных напряжений также одинаковы, т. е. фазный и линейный коэффициенты трансформации равны. Если же схемы соединения обмоток ВН и НН различны (звезда — треугольник или треугольник — звезда), фазный и линейный коэффициенты трансформации отличаются в 1,73 раз.

Если к первичной обмотке подвести напряжение U1 по ней потечет ток, который обозначим I0. Этот ток создает магнитный поток Ф. Магнитный поток Ф, возбуждаемый первичной обмоткой, индуктирует во вторичной обмотке э. д. с, величина которой равна Е2. Тот же самый магнитный поток индуктирует в первичной обмотке э. д. с. E1. Небольшой ток I0, потребляемый первичной обмоткой трансформатора при холостом ходе, называется током холостого хода. Величина этого тока обычно составляет 3—10% от тока при номинальной нагрузке трансформатора.

Построим векторную диаграмму холостой работы однофазного трансформатора без потерь (идеального) (рис. 190). Намагничивающий ток I0 создает магнитный поток Ф, который совпадает с током I0 по фазе. Как уже указывалось, магнитный поток Ф индуктирует в первичной обмотке э. д. с. Е1 а во вторичной обмотке — э. д. с. Е2. Напомним, что всякая э. д. с, индуктируемая синусоидально изменяющимся магнитным потоком, отстает от потока по фазе на 90°. Поэтому векторы E1 и E2 мы откладываем под углом 90° от потока в сторону, обратную вращению векторов. Индуктированную в первичной обмотке з. д. с. Е1 уравновешивает напряжение сети U1.


Э. д. с. E1 и напряжение U1 равны и взаимно противоположны (падение напряжения в первичной обмотке при этом режиме очень мало и им можно пренебречь).

Из векторной диаграммы видно, что ток I0, потребляемый идеальным трансформатором при холостой работе, отстает от напряжения сети U1 на 90°, т. е. является чисто реактивным.

У реального трансформатора из-за потерь в стали (на вихревые токи и гистерезис) возникает сдвиг по фазе между током холостого хода I0 и магнитным потоком Ф, причем ток будет опережать магнитный поток. Ток холостого хода I0 трансформатора имеет две составляющие (рис. 191): 1—активную Iа = I0 соs φ0, вызванную потерями в стали (эта составляющая очень мала, так как малы потери холостого хода),

2-реактивную Iр =I0. sin φ0, называемую током намагничивания, создающую магнитный поток Ф и совпадающую с ним по фазе. Так как активная составляющая I0 cos φ0 мала, то намагничивающий ток почти равен всему току холостого хода I0. Поэтому I0 является почти целиком реактивным. В режиме холостого хода ток во вторичной обмотке отсутствует и поэтому напряжение на зажимах вторичной обмотки равно э. д. с, индуктированной в этой обмотке:

U2=E2


Расчет

Расчет и построение К.П.Д.

Расчет к.п.д., согласно условию, провести при cosφ=1 и cosφ=0,8 для βнг=0,25; 0,5; 0,75; 1; 1,25; к.п.д. определяется по формуле:

 

 


ΔP0=const

cosφ=1 ; βнг=0,25

βнг=0,5

βнг=0,75

βнг=1

βнг=1,25

cosφ=0,8 ; βнг=0,25

βнг=0,5


βнг=0,75

βнг=1

βнг=1,25

Введение

Трансформатор (от лат. transformo — преобразовывать) — статическое (не имеющее подвижных частей) электромагнитное устройство, предназначенное для преобразования посредством электромагнитной индукции системы переменного тока одного напряжения в систему переменного тока обычно другого напряжения при неизменной частоте и без существенных потерь мощности.

Трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток, охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала.

Для создания трансформаторов необходимо было изучение свойств материалов: неметаллических, металлических и магнитных, создания их теории

Столетов Александр Григорьевич (профессор МУ) сделал первые шаги в этом направлении - обнаружил петлю гистерезиса и доменную структуру ферромагнетика (80-е).

Братья Гопкинсоны разработали теорию электромагнитных цепей

В 1831 году английским физиком Майклом Фарадеем было открыто явление электромагнитной индукции, лежащее в основе действия электрического трансформатора, при проведении им основополагающих исследований в области электричества.

Схематичное изображение будущего трансформатора впервые появилось в 1831 году в работах Фарадея и Генри. Однако ни тот, ни другой не отмечали в своём приборе такого свойства трансформатора, как изменение напряжений и токов, то есть трансформирование переменного тока.

 


В 1848 году французский механик Г. Румкорф изобрёл индукционную катушку. Она явилась прообразом трансформатора

30 ноября 1876 года, дата получения патента Яблочковым Павлом Николаевичем, считается датой рождения первого трансформатора. Это был трансформатор с разомкнутым сердечником, представлявшим собой стержень, на который наматывались обмотки.

Первые трансформаторы с замкнутыми сердечниками были созданы в Англии в 1884 году братьями Джоном и Эдуардом Гопкинсон

С изобретением трансформатора возник технический интерес к переменному току. Русский электротехник Михаил Осипович Доливо-Добровольский в 1889 г. предложил трёхфазную систему переменного тока, построил первый трёхфазный асинхронный двигатель и первый трёхфазный трансформатор. На электротехнической выставке во Франкфурте-на-Майне в 1891 г. Доливо-Добровольский демонстрировал опытную высоковольтную электропередачу трёхфазного тока протяжённостью 175 км трёхфазный генератор, имеющий мощность 230 КВт при напряжении 95 В.

1928 год можно считать началом производства силовых трансформаторов в СССР, когда начал работать Московский трансформаторный завод (впоследствии — Московский электрозавод).

В начале 1900-х годов английский исследователь-металлург Роберт Хедфилд провёл серию экспериментов для установления влияния добавок на свойства железа. Лишь через несколько лет ему удалось поставить заказчикам первую тонну трансформаторной стали с добавками кремния.

Следующий крупный скачок в технологии производства сердечников был сделан в начале 30-х годов XX в, когда американский металлург Норман П. Гросс установил, что при комбинированном воздействии проката и нагревания у кремнистой стали появляются незаурядные магнитные свойства


в направлении прокатки: магнитное насыщение увеличивалось на 50 %, потери на гистерезис сокращались в 4 раза, а магнитная проницаемость возрастала в 5 раз.

Области применения трансформатора

Передача электрической энергии большой мощности на большие расстояния технически возможна и экономически целесообразна при малых сечениях проводов линии передачи и малых потерях энергии в них. Сечение проводов и потери мощности в них определяются током, а ток при заданной мощности, как известно, зависит от напряжения:

S =UI.

Естественно, чем выше напряжение, тем меньше ток. сечение проводов и потери мощности.

Напряжение синхронных генераторов электрических станций относительно невелико: 15000 — 24000 В, сечение проводов и потери мощности в проводах линии передачи при этом напряжении были бы слишком велики. Поэтому на электрических станциях с помощью трансформаторов напряжение повышают до 110000 — 750000 В и электроэнергию передают при таком напряжении к местам потребления. Энергия столь высокого напряжения не может быть непосредственно использована подавляющим числом потребителей, поскольку они рассчитаны по технико-экономическим соображениям и условиям безопасности для работы при относительно низком напряжении — порядка 220 — 380 — 500 В. Следует отметить, что имеется довольно широкая группа потребителей, работающих при напряжении 10 (6) кВ. Поэтому в местах потребления электрической энергии (в конце линии передачи) напряжение понижают до требуемых значений также с помощью


трансформаторов. Это — одна из основных областей применения трансформаторов, где без них обойтись невозможно.

Трансформаторы широко используются во всякого рода измерительных устройствах, радиоприемниках, телевизорах, осциллографах, для местного освещения и т. п. В этих случаях трансформатор преобразует имеющееся стандартное напряжение электрической сети в напряжение другого значения, которое необходимо для питания отдельных элементов электротехнических устройств. Во многих случаях трансформаторы имеют несколько обмоток. Трансформаторы используются в сварочных и электротермических установках. Трансформаторы широко используются при измерении тока, напряжения и мощности в электрических цепях с большим напряжением или с большими токами. Они называются измерительными. Существует много специальных трансформаторов, работающих во всякого рода автоматических установках, напряжение на их обмотках во многих случаях несинусоидальное. В этой книге рассматриваются трансформаторы, работающие в цепях синусоидального тока.

 


Виды трансформаторов:

1. Силовой трансформатор — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии.

2. Автотрансформатор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. В промышленных сетях, где наличие заземления нулевого провода обязательно, этот фактор роли не играет. Зато существенным является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость. Особенно эффективен автотрансформатор в случаях, когда необходимо получить вторичное напряжение, не сильно отличающееся от первичного.

3. Трансформатор тока — трансформатор, питающийся от источника тока. Типичное применение - для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации. Номинальное значение тока вторичной обмотки 1А , 5А. Первичная обмотка


трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, равен току первичной обмотки, деленному на коэффициент трансформации.

4. Трансформатор напряжения — трансформатор, питающийся от источника напряжения. Типичное применение - преобразование высокого напряжения в низкое в цепях, в измерительных цепях и цепях РЗиА. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.

5. Импульсный трансформатор — трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса. Основное применение заключается в передаче прямоугольного электрического импульса (максимально крутой фронт и срез, относительно постоянная амплитуда). Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. В большинстве случаев основное требование, предъявляемое к ИТ заключается в неискажённой передаче формы трансформируемых импульсов напряжения; при воздействии на вход ИТ напряжения той или иной формы на выходе желательно получить импульс напряжения той же самой формы, но, быть может, иной амплитуды или другой полярности.

6. Разделительный трансформатор — трансформатор, первичная обмотка которого электрически не связана с вторичными обмотками. Силовые разделительные трансформаторы предназначены для повышения безопасности электросетей, при случайных одновременных прикасаний к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции. Сигнальные


разделительные трансформаторы обеспечивают гальваническую развязку электрических цепей.

7. Пик-трансформатор — трансформатор, преобразующий напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью.



Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.236.212.116 (0.013 с.)