Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Интерфейс программы компас в режиме 3D моделирования.

Поиск

Введение

Развитие новых технологий постоянно предъявляет все более жесткие требования к современному инженеру-конструктору. Уже давно остались в прошлом те времена, когда все конструкторские расчеты, чертежи и документация выполнялись вручную, а главными инструментами проектировщика были карандаш и кульман. Точность таких чертежей и документации зависела от многих субъективных факторов, таких как тщательность выполнения графического изображения, квалификация проектировщика и пр. Самое плохое, что такие чертежи практически невозможно было редактировать. В результате проектируемый объект мог быть далек от совершенства.

За два последних десятилетия информационные технологии коренным образом изменили принципы конструирования, ускорив при этом процесс разработки изделия, повысив его точность и надежность в десятки раз. Бытует ошибочное мнение, что графические и расчетные системы – это всего лишь цифровая замена проектирования вручную. Хотя в самом начале, конечно, так и было. Первые версии западных программ для работы с инженерной двухмерной графикой были не чем иным, как электронным вариантом карандаша и кульмана. Однако благодаря высоким технологиям сфера конструирования развивалась, и в результате появилась отдельная самостоятельная отрасль – автоматизированное проектирование. Постепенно в графических редакторах стало возможно повторно использовать ранее спроектированные изделия, легко и быстро создавать типовые элементы, самостоятельно оформлять чертежи и прочую документацию. Следом за этим появился механизм параметризации графического изображения.

Переворотом в промышленном проектировании стало применение в конструировании трехмерной графики. Сначала в строительстве, потом в тяжелом машиностроении, а за ними и в других отраслях начали активно искать применение возможностям объемной компьютерной графики. Нельзя сказать, что переход на трехмерную графику был безболезненным. Во-первых, из-за требований стандартов (ГОСТ, СНИП и т. п.), касающихся только плоской графики и, во-вторых, из-за негибкости мышления многих инженеров, упрямо отталкивающих все новое. Однако другого пути не было. Проектная организация, активно использующая современные системы автоматизированного проектирования (САПР) и расчетные комплексы, успевала выполнить и представить несколько полноценных решений определенного проекта, тогда как за то же время другая организация, не применяющая САПР, едва ли успевала подготовить один эскизный проект. Кроме лучшего визуального представления проектируемых изделий, 3D-графика на порядок повышает точность проектирования особенно сложных (составных) объектов, позволяет легко редактировать трехмерную модель. Ассоциативная связь, устанавливаемая в инженерных 3D-системах между моделью изделия, его чертежами, а также документацией на изделие (например, спецификацией), позволяет при внесении изменений в 3D-модель автоматически отобразить все эти изменения в других документах, связанных с моделью. Именно за счет этого и достигается колоссальная экономия времени и затрат труда на проектирование. Дальнейшее развитие САПР дало возможность собрать воедино все данные о проектируемом объекте в системах управления жизненным циклом и инженерными данными, а также гибко управлять этими данными в зависимости от потребностей каждого конкретного предприятия.

Другой ветвью развития компьютерных систем для проектирования являются инженерные расчеты. Этот класс программ начал бурно развиваться с появлением 3D в конструировании и на данный момент очень востребован. Трехмерное представление напряжений от действующих нагрузок, трехмерное распределение (поле) температур, прочностной, кинематический, динамический анализ и многое другое стали доступны инженеру, использующему такие системы. Очень многие расчеты, которые ранее едва ли можно было выполнить или которые требовали суперквалифицированных специалистов, сейчас легко решаются с помощью таких приложений.

На сегодня все существующие программные пакеты, которые предназначены для инженерного моделирования, можно разделить на три категории.

Системы тяжелого класса. Они содержат мощные гибридные трехмерные редакторы (такие, в которых реализовано как твердотельное, так и поверхностное моделирование), а также встроенные функции для различных инженерных расчетов. Весьма сложны для освоения, требуют специальных знаний и навыков, очень дорогостоящие, однако позволяют создавать и рассчитывать модели практически любых форм. Это системы класса Pro\ENGINEER, CATIA и пр.

Системы среднего класса. Такие системы сейчас наиболее распространены и популярны. Они позволяют решать большинство задач проектирования на основе, как правило, твердотельного моделирования, уделяя при этом немало внимания и плоскому черчению. Могут иметь небольшие модули, решающие типовые расчетные задачи. Сравнительно недорогие, легкие в освоении, ориентированы на пользователя (то есть на обычного инженера) и не столь требовательны к аппаратным средствам, как системы тяжелого класса. К этим системам можно отнести Autodesk Inventor, SolidWorks, Solid Edge и т. д.

Узкоспециализированные модули. Это, как правило, небольшие программы, автоматизирующие решение нетипичной узкопрофильной задачи конкретной отрасли промышленности или человеческой деятельности. Эти приложения могут как быть самостоятельными, так и базироваться на каких-либо программных пакетах тяжелого или среднего классов (так называемые подключаемые модули или библиотеки).

Радует тот факт, что в области инженерного проектирования среди систем среднего класса есть представители не только западных IT-компаний. Хорошим примером тому служит российская система трехмерного твердотельного моделирования КОМПАС-3D, которой и посвящена эта книга. Всего за последние несколько лет КОМПАС-3D из плоского чертежного редактора вырос во многофункциональную систему 3D-CAD с собственным математическим ядром. Большим плюсом этой программы является поддержка как западных, так и отечественных стандартов выполнения чертежей и подготовки документации. Кроме того, собственные ноу-хау в сфере трехмерного моделирования, удобный чертежно-графический редактор, большое количество вспомогательных приложений могут сделать ваше проектирование не только быстрым и точным, но и приятным

Меню Сервис

Команды этого меню служат для управления состоянием текущего документа, а также для изменения некоторых параметров его оформления и отображения. С помощью меню Сервис вызываются диалоговые окна системных настроек, параметров отдельных документов, настроек оформления чертежей, внешнего вида приложения и пр. Состав этого меню несколько различается для графических и трехмерных документов, поэтому рассматривать их будем отдельно.

Совет

Лучше объединять в макроэлемент объекты, которые формируют на чертеже уже законченный конструктивный элемент и при последующей доработке или редактировании чертежа изменяться не будут. Такие элементы удобно перемещать или копировать в пределах вида. Если в макроэлемент как составной объект предполагается часто вносить изменения, намного удобнее будет использовать слой или объединение графических элементов в именованную группу.

Команда Изменить стиль вызывает окно Изменение стилей выделенных объектов, с помощью которого можно за один подход изменить стиль для группы выделенных объектов (например, стили линий или точек).

Команда Изменить слой позволяет переместить выделенные объекты чертежа или фрагмента на другой слой в чертеже. После ее выполнения на экране появится окно Выберите слой со списком присутствующих в чертеже слоев. Переносить можно только в пределах одного вида.

Команда Очистить фон управляет перекрытием выделенным элементом (текстом, размером или обозначением) штриховок и линий чертежа. При установленном флажке возле команды Очистить фон поле вокруг надписи, размера или обозначения очищается от линий и штриховки (рис. 1.28, слева), при снятом флажке – элемент оформления просто накладывается на изображение в чертеже (рис. 1.28, справа).

Рис. 1.28. Вид текстовой надписи при установленном (слева) и снятом (справа) флажке возле команды Очистить фон

 

Следующие три команды – Менеджер документа, Состояние видов и Параметры текущего вида – служат для отображения параметров видов текущего чертежа и управления их состоянием. Обратите внимание на то, что, поскольку в документе КОМПАС-Фрагмент присутствует всего один вид, в этих трех командах нет необходимости. Поэтому данные команды активны, только если выбран документ КОМПАС-Чертеж.

Команда Менеджер документа вызывает на экран одноименное диалоговое окно (рис. 1.29). В этом окне отображается структура графического документа: листы, виды и слои, присутствующие в чертеже. Менеджер документа обладает собственной панелью инструментов, которая позволяет создавать или удалять листы или слои, выбирать текущий вид или слой, изменять свойства объектов, составляющих структуру документа.

Рис. 1.29. Окно Менеджер документа

 

Команда Состояния видов вызывает тот же диалог – Менеджер документа. Единственное ее отличие от команды Менеджер документа заключается в том, что она неактивна, если в документе не создано ни одного вида, кроме системного.

Команда Параметры текущего вида позволяет настроить параметры текущего вида. После ее вызова на панели свойств отображается набор элементов управления, позволяющих отредактировать характерные параметры вида (масштаб, цвет, имя и пр.).

Подменю Измерить включает в себя команды для проведения измерений в графических документах. С их помощью можно измерить координаты точки, расстояние между двумя точками, длину кривой, площадь произвольной фигуры и т. д.

Подменю МЦХ предназначено для расчета масс-центровочных и инерционных характеристик плоских фигур.

С помощью команды Правописание можно проверить правописание во всем графическом документе, включая текстовые надписи, таблицы, элементы оформления чертежа. Для запуска проверки правописания можно воспользоваться сочетанием клавиш Ctrl+F7. Каждый раз, когда система обнаружит слово, которое, по ее мнению, содержит ошибку, она выведет окно со списком возможных замен. После проверки документа система выдаст уведомление об окончании операции.

После подменю МЦХ находится раздел, включающий в себя перечень пользовательских утилит (например, калькулятор). Вы можете произвольно настраивать список утилит, которые потом сможете вызывать из данного списка. Настройка производится на вкладке Утилиты диалогового окна Настройка интерфейса.

Подменю Библиотеки стилей предоставляет доступ к настройке и управлению стилями различных объектов, применяющихся в работе с документами КОМПАС-3D. С помощью команд этого меню можно создавать новые или редактировать имеющиеся стили линий, штриховок, типы основных надписей, типы оформления чертежей и пр.

Последние четыре команды меню Сервис (Профили, Настройка интерфейса, Параметры и Вид приложения) предназначены для настройки интерфейса и системных параметров программного пакета КОМПАС. Они будут подробно рассмотрены в соответствующем разделе этой главы.

Размеры и обозначения

Ни один чертеж не может считаться полноценным, если в нем нет размеров и различных обозначений (знаков шероховатостей, баз, отклонений, линий выносок и пр.), предусмотренных стандартами. Система КОМПАС-График содержит большой набор средств для создания размеров и различных знаков обозначений.

Обозначения на чертеже

Команды для простановки обозначений (а также некоторые другие) находятся на панели инструментов Обозначения (рис. 2.50). Эта панель вызывается, как и прочие, щелчком на одноименной кнопке компактной панели.

Рис. 2.50. Панель Обозначения

 

Для создания элементов оформления предназначены следующие кнопки.

 

Шероховатость – позволяет размещать на графических объектах (или на их продлении) знаки шероховатости (рис. 2.51). Можно использовать структуру обозначения знака по ГОСТ 2.309—73 или более позднюю редакцию, соответствующую изменению № 3 от 2003 года в ГОСТ 2.309—73. Выбрать структуру обозначения можно на вкладке Новые документы диалогового окна Параметры в разделе Графический документ → Шероховатость. Для установки знака шероховатости достаточно указать кривую, на которой он будет размещен, выбрать тип знака, а также при необходимости заполнить надписи.

Рис. 2.51. Примеры обозначения шероховатости в КОМПАС

 

База – предназначена для создания обозначения базы на чертеже. Кнопка недоступна, если документ пуст. Система автоматически отслеживает имеющиеся в чертеже базы, исходя из чего, самостоятельно подбирает букву для обозначения.

 

Линия-выноска – позволяет создавать на чертеже произвольное количество линий-выносок (рис. 2.52, а).

 

Знак клеймения – позволяет создать линию-выноску для обозначения клеймения (рис. 2.52, б).

 

Знак маркировки – дает возможность разместить на чертеже линию-выноску с обозначением маркировки (рис. 2.52, в).

 

Знак изменения – позволяет обозначить изменения (рис. 2.52, г).

 

Обозначение позиций – команда, без которой не обойтись при создании сборочного чертежа. Она позволяет размещать на чертеже обозначения позиций, при этом система автоматически следит за нумерацией. Отображение позиционной выноски можно настраивать на вкладке Параметры панели свойств (рис. 2.53). Вы можете изменять тип стрелки (точка, стрелка или без стрелки), направления полки и текста относительно базовой точки, а также выбирать тип формы (рис. 2.54). Флажок Полка служит для управления отображениям полки позиционной линии-выноски.

Рис. 2.52. Варианты линий-выносок: произвольная (а), знак клеймения (б), маркировка (в), обозначение изменения (г)

 

Примечание

Кнопки Линия-выноска, Знак клеймения, Знак маркировки и Знак изменения на панели Обозначения объединены в одну группу.

 

Рис. 2.53. Параметры отображения позиционной линии-выноски

 

Рис. 2.54. Формы отображения обозначения позиций: простой текст (а), открытый текст (б), круг (в), шестиугольник (г), круг с разделителем (д)

 

Допуск формы – позволяет вставить в чертеж допуск формы и расположения поверхности.

 

Линия разреза – дает возможность создавать простую или ступенчатую линию разреза на чертеже. Буквенное обозначение разреза устанавливает система. При этом она не использует буквы, которые уже заняты для обозначения баз или других разрезов.

 

Стрелка взгляда – позволяет строить стрелку, указывающую направление взгляда.

 

Выносной элемент – создает на изображении обозначение выносного элемента (круг с линией-выноской). Обратите внимание, эта команда создает лишь обозначение выносного элемента! Само изображение, которое попало в пределы, охваченные этим обозначением, вы должны чертить сами (за исключением изображений ассоциативных видов).

Примечание

После завершения выполнения команд Линия разреза, Стрелка взгляда или Выносной элемент запускается команда создания нового вида в чертеже и, соответственно, его обозначения. Это обычный текстовый объект, в состав которого входит буквенное обозначение вида, знак «развернуто» или «повернуто», масштаб и угол поворота вида, номер листа и обозначение зоны. Особенность обозначения вида заключается в том, что оно ассоциативно связано с тем видом, на который указывает. Разместив локальную систему координат, после завершения формирования линии разреза, сечения, вида по стрелке или выносного элемента вы можете приступать к созданию изображения этого вида.

Большинство рассмотренных команд используется в примере, приведенном в конце главы.

Вы наверняка заметили, что я описал не все команды панели инструментов Обозначения. Причина состоит в том, что на этой панели есть несколько команд, не связанных с обозначениями.

 

Ввод текста – служит для создания текстовых надписей на чертеже или фрагменте. При оформлении текста вы можете выбирать любой шрифт, устанавливать междустрочный и междусимвольный интервалы, задавать выравнивание текста, вставлять в текст различные символы, спецзнаки, использовать дроби, верхние/нижние индексы и пр. Все перечисленные параметры настраиваются на панели свойств.

 

Ввод таблицы – позволяет поместить на чертеж таблицу. После указания точки привязки таблицы в документе (верхнего левого угла размещаемой таблицы) появится окно создания новой таблицы (рис. 2.55). В нем можно задать количество строк и столбцов, а также их размеры. Чтобы изменить ширину столбцов, можно просто перетащить границы ячеек таблицы мышью.

Рис. 2.55. Диалоговое окно Создать таблицу

 

Осевая линия по двум точкам – строит осевую линию по двум указанным точкам. Особенность этой команды заключается в том, что она автоматически формирует выступы (их величину можно настраивать на панели свойств) слева и справа от указанных точек. Таким образом, осевая хорошо «ложится» на объект, и ее не нужно дополнительно растягивать.

 

Автоосевая – также создает осевую линию. Ее преимущество перед кнопкой Осевая линия по двум точкам состоит в том, что она распознает тип указанного пользователем объекта, в зависимости от чего предлагает оптимальный способ построения осевой. Например, при указании окружности команда без каких-либо дополнительных настроек создаст оси симметрии этой окружности. При последовательном указании двух параллельных отрезков осевая линия будет размещена посередине между ними и т. д.

 

Обозначение центра – предназначена для обозначения центра окружностей, дуг, эллипсов, прямоугольников и пр. По умолчанию обозначение центра формируется в виде двух пересекающихся осей. Можно также указывать центр одной осью или точкой.

 

Волнистая линия – позволяет автоматически создать волнистую линию обрыва по двум указанным крайним точкам.

 

Линия с изломами – составляет одну группу с предыдущей кнопкой и позволяет строить на чертеже линию обрыва с изломами.

 

 

 

 

Заключение.

К услугам пользователя:

продуманный и удобный интерфейс, делающий работу конструктора быстрой и приносящей удовольствие,

многолистовые чертежи, разнообразные способы и режимы построения графических примитивов (в том числе ортогональное черчение, привязка к сетке и т.д.),

управление порядком отрисовки графических объектов,

мощные средства создания параметрических моделей для часто применяемых типовых деталей или сборочных единиц,

создание библиотек типовых фрагментов без какого-либо программирования,

любые стили линий, штриховок, текстов, многочисленные способы простановки размеров и технологических обозначений,

автоподбор допусков и отклонений, быстрый доступ к типовым текстам и обозначениям,

встроенный текстовый редактор с проверкой правописания,

встроенный табличный редактор.

КОМПАС-График автоматически генерирует ассоциативные виды трехмерных моделей (в том числе разрезы, сечения, местные разрезы, местные виды, виды по стрелке, виды с разрывом). Все они ассоциированы с моделью: изменения в модели приводят к изменению изображения на чертеже. Стандартные виды автоматически строятся в проекционной связи. Данные в основной надписи чертежа (обозначение, наименование, масса) синхронизируются с данными из трехмерной модели.

Введение

Развитие новых технологий постоянно предъявляет все более жесткие требования к современному инженеру-конструктору. Уже давно остались в прошлом те времена, когда все конструкторские расчеты, чертежи и документация выполнялись вручную, а главными инструментами проектировщика были карандаш и кульман. Точность таких чертежей и документации зависела от многих субъективных факторов, таких как тщательность выполнения графического изображения, квалификация проектировщика и пр. Самое плохое, что такие чертежи практически невозможно было редактировать. В результате проектируемый объект мог быть далек от совершенства.

За два последних десятилетия информационные технологии коренным образом изменили принципы конструирования, ускорив при этом процесс разработки изделия, повысив его точность и надежность в десятки раз. Бытует ошибочное мнение, что графические и расчетные системы – это всего лишь цифровая замена проектирования вручную. Хотя в самом начале, конечно, так и было. Первые версии западных программ для работы с инженерной двухмерной графикой были не чем иным, как электронным вариантом карандаша и кульмана. Однако благодаря высоким технологиям сфера конструирования развивалась, и в результате появилась отдельная самостоятельная отрасль – автоматизированное проектирование. Постепенно в графических редакторах стало возможно повторно использовать ранее спроектированные изделия, легко и быстро создавать типовые элементы, самостоятельно оформлять чертежи и прочую документацию. Следом за этим появился механизм параметризации графического изображения.

Переворотом в промышленном проектировании стало применение в конструировании трехмерной графики. Сначала в строительстве, потом в тяжелом машиностроении, а за ними и в других отраслях начали активно искать применение возможностям объемной компьютерной графики. Нельзя сказать, что переход на трехмерную графику был безболезненным. Во-первых, из-за требований стандартов (ГОСТ, СНИП и т. п.), касающихся только плоской графики и, во-вторых, из-за негибкости мышления многих инженеров, упрямо отталкивающих все новое. Однако другого пути не было. Проектная организация, активно использующая современные системы автоматизированного проектирования (САПР) и расчетные комплексы, успевала выполнить и представить несколько полноценных решений определенного проекта, тогда как за то же время другая организация, не применяющая САПР, едва ли успевала подготовить один эскизный проект. Кроме лучшего визуального представления проектируемых изделий, 3D-графика на порядок повышает точность проектирования особенно сложных (составных) объектов, позволяет легко редактировать трехмерную модель. Ассоциативная связь, устанавливаемая в инженерных 3D-системах между моделью изделия, его чертежами, а также документацией на изделие (например, спецификацией), позволяет при внесении изменений в 3D-модель автоматически отобразить все эти изменения в других документах, связанных с моделью. Именно за счет этого и достигается колоссальная экономия времени и затрат труда на проектирование. Дальнейшее развитие САПР дало возможность собрать воедино все данные о проектируемом объекте в системах управления жизненным циклом и инженерными данными, а также гибко управлять этими данными в зависимости от потребностей каждого конкретного предприятия.

Другой ветвью развития компьютерных систем для проектирования являются инженерные расчеты. Этот класс программ начал бурно развиваться с появлением 3D в конструировании и на данный момент очень востребован. Трехмерное представление напряжений от действующих нагрузок, трехмерное распределение (поле) температур, прочностной, кинематический, динамический анализ и многое другое стали доступны инженеру, использующему такие системы. Очень многие расчеты, которые ранее едва ли можно было выполнить или которые требовали суперквалифицированных специалистов, сейчас легко решаются с помощью таких приложений.

На сегодня все существующие программные пакеты, которые предназначены для инженерного моделирования, можно разделить на три категории.

Системы тяжелого класса. Они содержат мощные гибридные трехмерные редакторы (такие, в которых реализовано как твердотельное, так и поверхностное моделирование), а также встроенные функции для различных инженерных расчетов. Весьма сложны для освоения, требуют специальных знаний и навыков, очень дорогостоящие, однако позволяют создавать и рассчитывать модели практически любых форм. Это системы класса Pro\ENGINEER, CATIA и пр.

Системы среднего класса. Такие системы сейчас наиболее распространены и популярны. Они позволяют решать большинство задач проектирования на основе, как правило, твердотельного моделирования, уделяя при этом немало внимания и плоскому черчению. Могут иметь небольшие модули, решающие типовые расчетные задачи. Сравнительно недорогие, легкие в освоении, ориентированы на пользователя (то есть на обычного инженера) и не столь требовательны к аппаратным средствам, как системы тяжелого класса. К этим системам можно отнести Autodesk Inventor, SolidWorks, Solid Edge и т. д.

Узкоспециализированные модули. Это, как правило, небольшие программы, автоматизирующие решение нетипичной узкопрофильной задачи конкретной отрасли промышленности или человеческой деятельности. Эти приложения могут как быть самостоятельными, так и базироваться на каких-либо программных пакетах тяжелого или среднего классов (так называемые подключаемые модули или библиотеки).

Радует тот факт, что в области инженерного проектирования среди систем среднего класса есть представители не только западных IT-компаний. Хорошим примером тому служит российская система трехмерного твердотельного моделирования КОМПАС-3D, которой и посвящена эта книга. Всего за последние несколько лет КОМПАС-3D из плоского чертежного редактора вырос во многофункциональную систему 3D-CAD с собственным математическим ядром. Большим плюсом этой программы является поддержка как западных, так и отечественных стандартов выполнения чертежей и подготовки документации. Кроме того, собственные ноу-хау в сфере трехмерного моделирования, удобный чертежно-графический редактор, большое количество вспомогательных приложений могут сделать ваше проектирование не только быстрым и точным, но и приятным

Интерфейс программы компас в режиме 3D моделирования.

ознакомимся с главным меню программы Компас на примере документа Чертеж (Файл-Создать-Чертеж). Откроется главное окно системы, в котором отображаются следующие элементы:

1)Главноеменю;
2) Панели инструментов (Стандартная, Вид, Текущее состояние)
3)Компактная; панель
4)Строкасообщений;
5)Панельсвойств;
6)Окнодокумента.
7) Шаблон чертежа формата А4 в окне документа

 



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 692; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.146.94 (0.017 с.)