ХРОМАТОГРАФИЯ. ВИДЫ ХРОМАТОГРАФИИ.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

ХРОМАТОГРАФИЯ. ВИДЫ ХРОМАТОГРАФИИ.



Хроматография— динамический сорбционный метод разделения и анализа смесей веществ, а также изучения физико-химических свойств веществ. Основан на распределении веществ между двумя фазами — неподвижной (твердая фаза или жидкость, связанная на инертном носителе) и подвижной. Название метода связано с первыми экспериментами по хроматографии, в ходе которых разработчик метода Михаил Цвет разделял ярко окрашенные растительные пигменты.

В зависимости от агрегатного состоянияподвижной фазы различают газовую, флюидную и жидкостную хроматографию. В качестве неподвижной фазы используют твердые тела и жидкости.

В соответствии с агрегатным состоянием подвижной и неподвижной фазразличают следующие виды хроматографии: 1) газо-твердофазную хроматографию, или газоадсорбционную хроматографию; 2) газо-жидкостную хроматографию (газо-жидко-твердофазную); 3) жидко-твердофазную хроматографию; 4) жидко-жидкофазную хроматографию; 5) флюидно-твердофазную хроматографию; 6) флюидно-жидко-твердофазную хроматографию.

МЕТОДЫ ПОЛУЧЕНИЯ КОЛЛОИДНЫХ РАСТВОРОВ

Дисперсионные методы основаны на раздроблении твердых тел до частиц коллоидного размера и образовании таким образом коллоидных растворов . Процесс диспергирования осуществляется различными методами : механическим размалыванием вещества в т.н. коллоидных мельницах, электродуговым распылением металлов, дроблением вещества при помощи ультразвука.

Методы конденсации Вещество, находящееся в молекулярно-дисперсном состоянии, можно перевести в коллоидное состояние при замене одного растворителя другим – т.н. методом замены растворителя. В качестве примера можно привести получение золя канифоли, которая не растворяется в воде, но хорошо растворима в этаноле. При постепенном добавлении спиртового раствора канифоли к воде происходит резкое понижение растворимости канифоли, в результате чего образуется коллоидный раствор канифоли в воде. Аналогичным образом может быть получен гидрозоль серы.

Коллоидные растворы можно получать также и методом химической конденсации, основанном на проведении химических реакций, сопровождающихся образованием нерастворимых или малорастворимых веществ. Для этой цели используются различные типы реакций – разложения, гидролиза, окислительно-восстановительные и т.д. Так, красный золь золота получают восстановлением натриевой соли золотой кислоты формальдегидом

Золи могут быть получены также в результате реакций ионного обмена, в результате которых выделяется нерастворимая соль, образующая при определенных условиях коллоидный раствор ; так получают, например, золь иодида серебра (см. ниже).

Процесс гидролиза различных солейможет приводить к образованию коллоидных растворов нерастворимых гидроксидов или кислот; так получают, например, золь гидроксида железа(III), имеющий следующее строение.

ОЧИСТКА КОЛЛОИДНЫХ СИСТЕМ

Наиболее распространенными методами очистки коллоидных систем являются диализ, электродиализ и ультрафильтрация, основанные на свойстве некоторых материалов – т.н. полупроницаемых мембран (коллодия, пергамента, целлофана и т.п.) – пропускать ионы и молекулы небольших размеров и задерживать коллоидные частицы.

ДЭС ГЕЛЬМГОЛЬЦА

Двойной электрический слой (межфазный)( ДЭС ) — слой ионов, образующийся на поверхности частиц в результате адсорбции ионов из раствора, диссоциации поверхностного соединения или ориентировании полярных молекул на границе фаз. Ионы, непосредственно связанные с поверхностью называются потенциалопределяющими. Заряд этого слоя компенсируется зарядом второго слоя ионов, называемых противоионами. Первая модель ДЭС открыта Гельмгольцем

, он представлял ДЭС в виде двух обкладок плоского конденсатора, одна обкладка расположена непосредственно на поверхности электрода, вторая – в электролите.

d = диаметру молекул Н2О.

Так как все заряды сконцентрированы в двух плоскостях, то изменение потенциала по мере удаления от поверхности электрода Е 0 будет описываться прямой линией.

Еа – величина электродного удаления от поверхности электрода потенциала.

Используя теорию конденсатора, Гельмгольц

рассчитал величину заряда ДЭС и величину дифференциальной емкости ДЭС.

q – величина заряда = (D /4π 2)Е 0, С – дифференциальная емкость ДЭС = D /4π 2, D – диэлектрическая проницаемость раствора, d – расстояние между обкладками конденсатора.

ДЭС ГУИ

Двойной электрический слой имеет диффузионное (размытое) строение и все противоионы находятся в его диффузионной части Такое строение определяется соотношением сил электростатического притяжения ионов, за-

висящего от электрического потенциала, и тепловым движением ионов, стремящихся равномерно распределиться вовсем объеме жидкой фаз. Противоионы рассматриваются как точечные заряды, не имеющие собственных размеров, а потенциал φ экспоненциально снижается по мере удаления от поверхности. На некотором расстоянии (Δ) от межфазной границы проходит

плоскость скольжения АВ. Плоскость скольжения – плоскость, по которой происходит разрыв ДЭС при наложении электрического поля. Толщина слоя Δ не известна, но примерно составляет около 100 нм. Пересечение кривой падения потенциала с плоскостью скольжения дает величину электрокинетического (дзета-потенциала). Следовательно, электрокинетический потенциал ζ, измеряемый при электрокинетических явлениях, является частью общего скачка потенциала φ0 (φ0 > ζ).

ДЭС ШТЕРНА

Современная теория строения двойного электрического слоя Штерна объединяет две предыдущие теории. Согласно этой теории,слой противоионов состоит из двух частей Одна часть противоионов находится в непосредственной близости отмежфазной поверхности и образует слой Гельмгольца (адсорбционный слой), толщиной не более диаметра составляющих его гидратированных ионов. Адсорбционный слой формируется в результате электростатического взаимодействия с потенциалопределяющи ми ионами и специфической адсорбции. В адсорбционном слое наблюдается резкое падение электрического потенциала φ0 по прямой, согласно теории Гельмгольца-Перрена. Другая часть противоионов находится в диффузной части ДЭС (диффузный слой Гуи ), толщина которого может быть значительной и зависит от состава системы. В диффузной части ДЭС потенциал уменьшается по экспоненте, согласно теории Гуи-Чепмена

Таким образом, общее падение электрического потенциала φ0 складывается из падения адсорбционного потенциала (φ0 - φd) в плотной части ДЭС (линия АА´) и падения потенциала диффузного слоя φd – в его диффузионной части.

ЭФФЕКТ ДОРНА

Эффект Дорна связан с конвективным переносом ионов диффузной части ДЭС при движении частицы в электролите. Конвективные потоки ионов поляризуют двойной слой, и частицы в целом приобретают дипольный момент. При этом силовые линии электрич. поля выходят за пределы двойного слоя. При движении в электролите ансамбля частиц с дипольными моментами, имеющими одну и ту же ориентацию, порождаемые этими моментами электрические поля складываются и в системе возникает однородное электрич. поле, направленное параллельно (или антипараллельно) скорости движения частиц (группу движущихся с одинаковой скоростью частиц можно рассматривать как своеобразную мембрану, сквозь которую протекает электролит). Если частицы движутся в пространстве между двумя электродами, то на последних возникает разность потенциалов, которая может быть измерена. В частном случае осаждения ансамбля частиц под действием сил гравитации эта разность потенциалов наз. потенциалом оседания (седиментац. потенциалом).

ЭФФЕКТ КВИНКЕ

Обратные электрофорезу и электроосмосу электрокинетические явления (т.н. электрокинетические явления второго рода) называются соответственно потенциал седиментации и потенциал протекания. Потенциал седиментации (эффект Дорна) – возникновение разности потенциалов при вынужденном движении дисперсной фазы относительно неподвижной дисперсионной среды (например, под действием силы тяжести). Потенциал протекания (эффект Квинке ) есть явление возникновения разности потенциалов при движении дисперсионной среды относительно неподвижной дисперсной фазы (например, при продавливании электролита через пористое тело).



Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.234.211.61 (0.01 с.)