Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Технология на основе композиций силиката натрияСодержание книги
Поиск на нашем сайте
На заданном расстоянии от забоя нагнетательной скважины за счет взаимодействия силиката натрия Na2O × n SiO2 (раствора низкомодульного жидкого стекла с плотностью 1,36-1,45 кг/м3) и модулятора гелеобразования (МГ) образуются управляемые силикатные гели (УСГ). В качестве МГ могут использоваться вмещающие породы, разнообразные углеводороды, производные органических кислот, неорганические соединения (в частности, поваренная соль) и др. Нежелательное взаимодействие силиката натрия с солями жесткости, присутствующими в пластовой воде, предотвращается закачкой предоторочки пресной воды. Регулирование кинетики гелеобразования силикатно-гелевой композиции более гибко, чем в полимерных растворах. Продолжительность гелеобразования можно задавать в широком интервале: от нескольких часов до нескольких месяцев. Срок жизни УСГ не ограничен, при этом, в отличие от полимерных систем, гели в процессе приготовления и закачивания в пласт не разрушаются за счет механической термокислотной и биологической деструкции. Кроме того, скорость закачки раствора не влияет на его реологические характеристики. Компоненты композиции УСГ смешиваются с водой в любых соотношениях, поэтому технология их приготовления достаточно проста, в то время как для получения гомогенных полимерных растворов требуется специальная техника растворения. Композиции УСГ являются «экологически чистыми», их воздействие на нефтяной пласт считается наиболее мягким. Силикат-гелевые составы (СГС) обладают нежесткими структурно-механическими свойствами и постепенно разрушаются при эксплуатации скважин. При необходимости силикатный гель может быть легко разрушен введением щелочных агентов. Наибольшее распространение в качестве гелеобразующих веществ получил состав, содержащий 6 % водного раствора жидкого стекла и 10-процентный раствор соляной кислоты при соотношении 4 : 1. Этот состав является базовым. В высокопроницаемых промытых зонах на поздней стадии разработки для обеспечения оптимального радиуса воздействия целесообразно применять модифицированные ДМ или глинистые порошки (ГП), силикат-гелевые составы (МСГС) в объеме не менее 10 м3 на 1 м продуктивного пласта или 20 % от объема пор. Наилучшими физико-химическими свойствами обладают композиции, в которых к базовому составу добавляют 5 % ДМ или 10 % ГП. При концентрации ДМ в растворе МСГС выше 5 % возможны осложнения при нагнетании в скважину из-за увеличения динамической вязкости. Преимущества МСГС заключаются в следующем: · незначительное (до 1,5 мПа×с) повышение исходной вязкости после приготовления; · высокая фильтруемость в пористой среде; · достаточная для изоляции водопритоков прочность структуры после завершения гелеобразования; · простота и надежность технологий при их широком применении; · низкая стоимость и доступность реагентов; · при необходимости возможно разрушение силикат гелевых композиций в пласте. Одним из перспективных физико-химических методов повышения нефтеотдачи являются силикатно-щелочные заводнения с внутрипластовым осадкообразованием. За счет химической реакции силикатно-щелочного раствора (СЩР) с солями кальция и магния, находящихся в вытесняющих сточных водах, образуется осадок CaSiO3, который по природе является коллоидным и способен снижать проницаемость до 10 раз и более. В результате внутрипластового контакта нефти с щелочными растворами образуются ПАВ, снижающие межфазное натяжение на границе нефть – щелочной раствор до 0,1 мН/м. Это делает нефть более подвижной, приводит к эмульгированию нефтяной фазы в воду и вовлечению в процесс вытеснения остаточной нефти. Для предотвращения преждевременного смешения СЩР с вытесняющей сточной водой между ними закачивают оторочки умягченной пресной воды. Для приготовления СЩР используют натр едкий технический или товарную форму гидроксида натрия (жидкость плотностью 1450 кг/м3) и стекло натриевое жидкое или товарную форму жидкого стекла плотностью 1360 кг/м3. Концентрация компонентов в растворе, нагнетаемом в пласт, при рН = 12,7¸13,7 следующая, %: силикат натрия 2,0, гидроксида натрия 0,2-2,0. Для буферной оторочки и приготовления СЩР в воде необходимо 30-40 мг/дм3 ионов кальция и рН в пределах 7-8. закачка оторочек проводится в следующем порядке: · сточная минерализованная вода, применяемая для вытеснения нефти в системе ППД; · разделительная оторочка пресной воды; · оторочка СЩР; · разделительная оторочка пресной воды; · сточная минерализованная вода. Место выпадения осадков в пласте регулируют объемами оторочек пресной воды и СЩР, а степень снижения проницаемости обводненных зон продуктивного коллектора – изменением концентрации силиката и гидроксида натрия. Нагнетание оторочек проводят, в основном, с блочных насосных установок системы ППД, оборудованных емкостями большой вместимости. Систему нагнетания СЩР на время цикла закачивания в пласт дополнительно оборудуют быстросъемными стандартными заглушками на блок-гребенках, полностью исключающими смешение СЩР со сточной водой. Продолжительность закачивания СЩР (оторочек пресной воды) при непрерывном его нагнетании в скважину рассчитывают по формуле t = V / q, где V – запланированный для нагнетания объем СЩР, м3; q – производительность насоса, м3/ч. Объем товарного едкого натра для создания оторочки СЩР , где r – плотность рабочего СЩР, кг/м3; С гн – массовая концентрация гидроксида натрия в рабочем СЩР, %; С гн.т – массовая концентрация гидроксида натрия в товарном продукте, %; rт.н – плотность товарного продукта, кг/м3. Объем товарного жидкого стекла, расходуемого на создание оторочки СЩР, оценивают аналогично. Сточная вода, закачиваемая в пласт с целью смешения с СЩР и образования осадка, должна содержать не менее 400 мг/дм3 ионов кальция и не менее 200 мг/дм3 магния. Добавление полимеров, обладающих флоккулирующими свойствами, в раствор одного из реагентов позволяет «связать» отдельные образующиеся в пласте дисперсные частицы между собой и породой пласта и тем самым снизить проницаемость трещин и крупных пор. Увеличивая относительное содержание полимера в СЩР, можно снижать проницаемость за счет адсорбции полимеров. Для создания осадкообразующих силикатно-щелочно-полимерных систем (СЩПС) необходимо ввести в раствор 0,01-0,06 % ПАА. Закачивание СЩПС в неоднородные по проницаемости пласты позво качивание СЩПС в неоднородные по проницаемости пласты позволяет селективно за счет «сшивания» осадкообразования и породы отключать высокообводненные слои пласта и включать в разработку слабодренируемые зоны.
Тепловые методы повышения Нефтеотдачи пластов
При нагнетании в пласт теплоносителей (растворов на углеводородной основе, воды, пара) гидродинамическое вытеснение дополняется повышением температуры в залежи, что способствует снижению вязкости нефти и увеличению ее подвижности. Объектами применения технологии являются залежи высоковязкой тяжелой нефти, а также нефти, пластовая температура которой равна или близка к температуре насыщения парафином, если другие методы повышения нефтеотдачи не применимы или не обеспечивают достаточной эффективности. Среди технологий паротеплового вытеснения нефти выделяют циклическую закачку пара, закачку пара с последующим перемещением тепловой оторочки водой и непрерывное нагнетание пара в пласт. Многолетний опыт пароциклической отработки пластов показал, что эффективность метода падает от цикла к циклу на 10-50 %, а после пятого или шестого циклов метод становится экономически невыгодным. Для перераспределения потока вытесняющего пара широко используют химические добавки. Наибольшее распространение получили вспенивающие реагенты, в качестве которых применяют сульфанатные поверхностно-активные вещества. Для стабилизации пены и существенного увеличения фактора сопротивления проточных каналов в систему вводят каустик, а паронагнетание сочетают с закачкой газообразных смесей водорода, окиси углерода, азота и паров легких углеводородов. Газ повышает пенообразующую способность ПАВ и ускоряет темпы добычи нефти. Пенообразование в нефтяном пласте весьма эффективно при наличии высокопроницаемых каналов и трещин. Важным направлением совершенствования технологии закачки пара в целях повышения нефтеотдачи пласта является регулирование профиля фильтрации гелеобразующим составом. Гель характеризуется большей термостабильностью, чем пенные системы. Основу гелеобразующих смесей составляют поливиниловый спирт, альдегид и вода. Гелеобразующий состав может закачиваться в пласт вместе с паром или поочередно. Исходный состав имеет низкую вязкость и легко проникает в паропроводящие каналы пласта, где под действием высокой температуры образует структуры, закупоривающие поры. Состав, внедрившийся в зоны, не обработанные паром, из-за низкой температуры не образует связей и легко вытесняется из пласта. Эффективность метода добычи тяжелых и высоковязких нефтей существенно повышается при тепловом воздействии на пласт из горизонтальных стволов скважин. В последнее время это новое направление стало широко применяться в мировой практике. При вытеснении нефти паром могут применяться различные комбинации горизонтальных и вертикальных скважин в виде нагнетательных и добывающих. По мнению многих авторов, наиболее практической является схема, включающая для нагнетания пара вертикальные, а для добычи нефти горизонтальные скважины или наоборот. Горизонтальный участок скважины обеспечивает большую площадь контакта с нефтенасыщенной породой, благодаря чему увеличивается охват пласта тепловым воздействием. Горизонтальные стволы повышают продуктивность скважин в 5-10 раз, увеличивая темп отбора и сокращая время возврата вложенных средств. Экономически они наиболее выгодны в маломощных пластах и в залежах с низкими коллекторскими свойствами. Технология так называемой «паровой камеры» основана на механизме противоточной гравитационной сегрегации пара и разогретой нефти. Нагнетаемый пар будет стремиться в верхнюю часть залежи, а горячий конденсат и подвижная нефть за счет сил гравитации будут дренироваться в нижнюю горизонтальную добывающую скважину. При закачке теплоносителя могут возникнуть различные осложнения: вынос песка, нагрев обсадной колонны. Для их предупреждения проводят крепление призабойной зоны, ограничивают отбор жидкости вплоть до остановки добывающей скважины. Закачка пара является энергоемким процессом и характеризуется низким КПД из-за больших потерь тепла в наземных коммуникациях, в стволе скважины и по пласту. Даже в наиболее успешных проектах на выработку и закачку пара в парогенераторах расходуется от 1/5 до 1/2 топливного эквивалента добытой нефти. Для уменьшения теплопотерь выбирают пласты толщиной более 6 м, сгущают сетки между нагнетательными и добывающими скважинами, обеспечивают максимально возможный темп нагнетания теплоносителя (пара 250-300 т/сут и более), теплоизолируют трубы и др. Кроме того, на степень применения тепловых методов значительное влияние оказывает ограничение по защите окружающей среды за счет выбросов в атмосферу СO2 и NO2, выброса твердых веществ, загрязнения водоемов и др.
|
||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 617; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.190.253.224 (0.01 с.) |