Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Классификация основных электронных устройств, перспективы развития.

Поиск

Классификация основных электронных устройств, перспективы развития.

Электронные устройства разделяются на аналоговые и цифровые.

Аналоговые электронные устройства (АУЭ) - это устройства усиления и обработки аналоговых электрических сигналов, выполненные на основе электронных приборов. Следует выделить две большие группы по которым можно классифицировать аналоговые электронные устройства:

* усилители - это устройства, которые за счет энергии источника питания формируют новый сигнал, являющийся по форме более или менее точной копией заданного, но превосходит его по току, напряжению, или по мощности..

* устройства на основе усилителей - в основном преобразователи электрических сигналов и сопротивлений.

Преобразователи электрических сигналов (активные устройства аналоговой обработки сигналов) - выполняются на базе усилителей, либо путем непосредственного применения последних со специальными цепями обратных связей, либо путем некоторого их видоизменения. Сюда относят устройства суммирования, вычитания, логарифмирования, антилогарифмирования, фильтрации, детектирования, перемножения, деления, сравнения и др. Преобразователи сопротивлений - выполняются на основе усилителей с обратными связями. Они могут преобразовывать величину, тип, характер сопротивления. Используют их в некоторых устройствах обработки сигналов. Особый класс составляют всевозможные генераторы и связанные с ними устройства.

Аналоговый сигнал представляет собой непрерывную функцию, с неограниченной по количеству значений в различные моменты времени. Наиболее часто встречающимся аналоговым сигналом являются звуки нашей речи, которые на осциллограммах имеют различные, причудливые формы. Аналоговые сигналы изменяются по тому же закону, что и описываемые им физические процессы.

Цифровые технологии (англ. Digital technology) основаны на представлении сигналов дискретными полосами аналоговых уровней, а не в виде непрерывного спектра. Все уровни в пределах полосы представляют собой одинаковое состояние сигнала. Цифровая технология работает, в отличие от аналоговой, с дискретными, а не непрерывными сигналами. Кроме того, сигналы имеют небольшой набор значений, как правило, два. Обычно это 0 и 1, которые в булевской алгебре имеют значения «Ложь» и «Истина» соответственно. Цифровые схемы состоят в основном из логических элементов, таких как AND, OR, NOT и др., а также могут быть связаны между собой счетчиками и триггерами. Цифровые технологии главным образом используются в вычислительной цифровой электронике, прежде всего компьютерах, в различных областях электротехники, таких как игровые автоматы, робототехника, автоматизация, измерительные приборы, радио- и телекоммуникационные устройства и т. д.

В состав электронных устройств входят: неуправляемые полупроводниковые выпрямители, управляемые полупроводниковые выпрямители, электронные усилители, генераторы синусоидальных колебаний, генераторы пилобразного напряжения, мультивибраторы (аналоговые), логические элементы (цифровые) и пр.

 

 

 

Принцип действия, характеристики, условные обозначения и назначение полупроводниковых транзисторов.

Транзи́стор (англ. transistor), полупроводниковый триод — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналам управлять током в электрической цепи. Обычно используется для усиления, генерирования и преобразования электрических сигналов. На принципиальных схемах обозначается «VT» или «Q». В русскоязычной литературе и документации до 1970-х гг. применялись обозначения «Т», «ПП» (полупроводниковый прибор) или «ПТ» (полупроводниковый триод).

Принцип работы и обозначение. Для нормальной работы транзистора в первую очередь необходимо подать на его электроды напряжение питания. При этом напряжение на базе относи­тельно эмиттера (это напряжение часто называют напряжением смещения) долж­но быть равно нескольким десятым долям вольта, а на коллекторе относительно эмиттера — несколько вольт.

Включение в цепь n -р-n и р-n-р транзисторов отличается только полярностью напряжения на коллекторе и смещения. Кремниевые и германиевые транзисторы одной и той же структуры отличаются между собой лишь значением напряже­ния смещения. У кремниевых оно примерно на 0,45 В больше, чем у герма ниевых.

Назначение

Основное назначение транзистора - усиление или переключение электрических сигналов. В зависимости от чередования областей полупроводниковых слоев различают n-p-n и p-n-p транзисторы.

 

 

Классы работы усилителей

 

Различают три основных класса работы усилительного каскада – А, В, С. Режимы работы усилительных элементов определяются положением рабочей точки на проходной динамической характеристике.

Проходной динамической характеристикой называется зависимость выходного тока от входного напряжения. Для транзистора, включённого по схеме с ОЭ, зависимость будет Iк = f (Uбэ). Проходная динамическая характеристика может быть построена по входной и выходной характеристикам транзистора Iк = f (Uб)

В режиме работы класса А рабочая точка устанавливается на линейном участке проходной динамической характеристики (рисунок 5). Для этого между базой и эмиттером транзистора при помощи одной из схем питания цепи базы необходимо создать постоянную составляющую напряжения, которая называется величиной напряжения смещения. При отсутствии переменной составляющей усиливаемого сигнала рабочая точка называется рабочей точкой покоя. Нелинейные искажения минимальны. Угол отсечки θ = π (Углом отсечки называется половина той части периода, за которую в выходной цепи будет протекать ток). Недостатком режима класса А является низкий КПД(η = (25 – 30 %). Это объясняется тем, что энергия от источника питания затрачивается не только на усиление переменной составляющей, но и на создание постоянной составляющей Iо, которая является бесполезной и в дальнейшем отсеивается разделительным конденсатором. Режим класса А применяется, в основном, в предварительных каскадах усиления.

 

В режиме класса В рабочая точка выбирается таким образом, чтобы ток покоя был равен нулю (рисунок 6). Для режима класса В угол отсечки Θ = 90°. Характеризуется режим класса В высоким КПД η = 60. 70 %. Недостатком режима класса В являются большие нелинейные искажения. Применяется режим класса Вв выходных двухтактных усилителях мощности.

 

Рисунок 6 Режим В

Режим АВ является промежуточным между режимами А и В.

Иногда положение точки покоя в режиме класса АВ выбирается на нижнем изгибе проходной динамической характеристики (рисунок 7). В этом случае будет иметь место ток покоя, но величина его будет значительно меньше, чем в режиме класса А. Угол отсечки Θ в режиме класса АВ будет меньше 90°. Режим класса АВ имеет несколько меньший КПД, чем режим класса В (η = 50. 60 %) и несколько меньшие нелинейные искажения. Применяется так же, как и режим класса В, в двухтактных усилителях мощности.

 

В режиме С величина Eсм имеет отрицательное значение (рисунок 8). Режим класса С характеризуется максимальным КПД η = 80 %, но и наибольшими нелинейными искажениями. Режим С в усилителях применяется в выходных каскадах мощных передатчиков.

10. Схема и принцип работы дифференциального усилителя

Принцип работы дифференциального усилителя заключается в том, что он усиливает дифференциальный сигнал и преобразует его в несимметричный сигнал, с которым работают простые схемы.

Схема дифференциального усилителя представлена на рис. 2. При анализе дифференциального усилителя широ­ко используют дифференциальное входное напряжениеu вх.диф и синфазное входное напряжение ивх.сшф. Этипонятия при обращении к операционному усилителю ис­пользуют потому, что в качестве его входного каскада при­меняется дифференциальный усилитель. Дифференциаль­ное входное напряжение определяется выражением

Пусть ивх.диф = 0, тогда uвх.синф = uвх1 = uвх2. Напря­жение ивых.диф называют выходным дифференциальнымсигналом, причем ивых. диф = uвх1 - uвх2.

Основная идея, реализованная в дифференциальном каскаде, как это было показано выше, состоит в исполь­зовании в одном целом двух совершенно одинаковых по­ловин. Эта идея достаточно часто применяется в электро­нике.

 

Усилительные характеристики

Коэффициент усиления К равен отношению приращения выходного напряжения (тока) к вызвавшему это приращение входному напряжению (току) при отсутствии обратной связи (ОС). Он изменяется в пределах от 103 до 107.Важнейшими характеристиками ОУ являются амплитудные (передаточные) характеристики Амплитудные характеристики, представленные на (рис. 1.3), проходят через нуль. Состояние, когда Uвых = 0 при Uвх = 0,называется балансом ОУ.

Входные характеристики

Входное сопротивление, входные токи смещения, разность и дрейф входных токов смещения, а также максимальное входное дифференциальное напряжение характеризуют основные параметры входных цепей ОУ, которые зависят от схемы используемого дифференциального входного каскада.

Рис. 1.6

 

Максимальным дифференциальным входным напряжением лимитируется напряжение, подаваемое между входами ОУ в схеме, для исключения повреждения транзисторов дифференциального каскада.Для защиты между входами ОУ включаются встречно - параллельно два диода и стабиллитрона.

Следует различать дифференциальное входное сопротивление т.е. сопротивление между двумя входными выводами, и синфазное входное сопротивление, т.е. сопротивление между объединенными обоими входами и землей. Выходные характеристики Выходными параметрами ОУ являются выходное сопротивление, а также максимальное выходное напряжение и ток. ОУ должен обладать малым выходным сопротивлением для обеспечения высоких значений напряжения на выходе при малых сопротивлениях нагрузки. Малое выходное сопротивление достигается применением на выходе ОУ эмиттерного повторителя. Максимальное выходное напряжение (положительное или отрицательное) близко к напряжению питания. Максимальный выходной ток ограничивается допустимым коллекторным током выходного каскада ОУ. Энергетические характеристики

Энергетические параметры ОУ оценивают максимальными потребляемыми токами от обоих источников питания и соответственно суммарной потребляемой мощностью. Частотные характеристики

Усиление гармонических сигналов характеризуется частотными параметрами ОУ, а усиление импульсных сигналов - его скоростными или динамическими параметрами. Скоростные характеристики

Динамическими параметрами ОУ являются скорость нарастания выходного напряжения (скорость отклика) и время установления выходного напряжения. Они определяются по реакции ОУ на воздействие скачка напряжения на входе.

 

Принцип работыТрехфазные

выпрямители питаются от трехфазной сети переменного тока. В схему входит трехфазный трансформатор.
В интервале времени t1-t2 включается диод VD1. Сопротивление нагрузки питается от фазы "А"
В момент t2 происходит переключение диодов: закрывается диод VD1 и открывается диод VD2.
В интервале времени t2-t3 включается диод VD2. Сопротивление нагрузки питается от фазы "Б"
В момент t3 происходит переключение диодов: закрывается диод VD2 и открывается диод VD3.
В интервале времени t3-t4 включается диод VD3. Сопротивление нагрузки питается от фазы "Ц"
Суммарный ток, протекающий через сопротивление нагрузки равен сумме токов отдельных фаз. Коэффициент пульсации схемы равен 0.25 Коэффициент пульсаций - это отношение амплитуды наиболее резко выраженной гармонической составляющей напряжения или тока на выходе выпрямителя к среднему значению напряжения или тока.

RS-триггер асинхронный

S R Q(t) Q(t) Q(t+1) Q(t+1)
           
           
          1
           
           
           
        не определено не определено
        не определено не определено

Асинхронный RS-триггер с инверсными вход

RS-триггер, или SR-триггер — триггер, который сохраняет своё предыдущее состояние при нулевых входах и меняет своё выходное состояние при подаче на один из его входов единицы.

При подаче единицы на вход S выходное состояние становится равным логической единице. А при подаче единицы на вход R выходное состояние становится равным логическому нулю. Состояние, при котором на оба входа R и S одновременно поданы логические единицы, в простейших реализациях является запрещённым (так как вводит схему в режим генерации), в более сложных реализациях RS-триггер переходит в третье состояние QQ =00. Одновременное снятие двух «1» практически невозможно. При снятии одной из «1» RS-триггер переходит в состояние, определяемое оставшейся «1». Таким образом RS-триггер имеет три состояния, из которых два устойчивых (при снятии сигналов управления RS-триггер остаётся в установленном состоянии) и одно неустойчивое (при снятии сигналов управления RS-триггер не остаётся в установленном состоянии, а переходит в одно из двух устойчивых состояний).

RS-триггер используется для создания сигнала с положительным и отрицательным фронтами, отдельно управляемыми посредством стробов, разнесённых во времени..

RS-триггеры иногда называют RS-фиксаторами[12].
Условное графическое обозначение синхронного RS-триггера

Оперативные ЗУ

Структура 2DM

ЗУ типа ROM изображенной на рисунке 18 структуры 2DM для матрицы запоминающих элементов с адресацией от дешифратора DCx имеет как бы характер структуры 2D: возбужденный выход дешифратора выбирает целую строку. Однако в отличие от структуры 2D, длина строки не равна разрядности хранимых слов, а многократно ее превышает. При этом число строк матрицы уменьшается и, соответственно, уменьшается число выходов дешифратора. Для выбора одной из строк служат не все разряды адресного кода, а их часть Аn-1 ... Аk. Остальные разряды адреса (от Ak -1 до A0) используются, чтобы выбрать необходимое слово из того множества слов, которое содержится в строке. Это выполняется с помощью мультиплексоров, на адресные входы которых подаются коды Ak –1... Aq.

Длина строки равна m2k, где m - разрядность хранимых слов.

Из каждого "отрезка" строки длиной 2к мультиплексор выбирает один бит. На выходах мультиплексоров формируется выходное слово. По разрешению сигнала CS, поступающего на входы ОЕ управляемых буферов с тремя состояниями, выходное слово передается на внешнюю шину.


 

Рисунок 18 – Структура ЗУ типа 2DM для ROM
Данные в нужный отрезок этой строки записываются (или считываются из нее) управляемыми буферами данных BD, воспринимающими выходные сигналы второго дешифратора DCY, и выполняющими не только функции мультиплексирования, но и функции изменения направления передачи данных под воздействием сигнала R/W.
Запоминающие устройства (ЗУ) служат для хранения информации и обмена ею с другими цифровыми устройствами, причем можно выделить следующие уровни:
регистровые ЗУ, находящиеся в составе процессора или других устройств;
кэш - память, служащая для хранения копий информации, используемой в текущих операциях обмена;
основная память (оперативная, постоянная, полупостоянная), работающая в режиме непосредственного обмена с процессором и по возможности согласованная с ним по быстродействию;

специализированные виды памяти, характерные для некоторых специфических архитектур (многопортовые, ассоциативные, видеопамять и др.);внешняя память, хранящая большие объемы информации.

Структура ОЗУ типа 2DM.

ЗУ типа ROM (рис. 9.3, а) структуры 2DM для матрицы запоминающих элементов с адресацией от дешифратора DCx имеет как бы характер структуры 2D: возбужденный выход дешифратора выбирает целую строку. Однако в отличие от структуры 2D, длина строки не равна разрядности хранимых слов, а многократно ее превышает. При этом число строк матрицы уменьшается и, соответственно, уменьшается число выходов дешифратора. Для выбора одной из строк служат не все разряды адресного кода, а их часть An-1...Ak. Остальные разряды адреса (от Ak-1 до A0) используются, чтобы выбрать необходимое слово из того множества слов, которое содержится в строке. Это выполняется с помощью мультиплексоров, на адресные входы которых подаются коды Ak-1... A0. Длина строки равна m2k, где m – разрядность хранимых слов. Из каждого "отрезка" строки длиной 2kмультиплексор выбирает один бит. На выходах мультиплексоров формируется выходное слово. По разрешению сигнала CS, поступающего на входы ОЕ управляемых буферов с тремя состояниями, выходное слово передается на внешнюю шину.

На рис. 9.3, б в более общем виде структура 2DM показана для ЗУ типа RAM с операциями чтения и записи. Из матрицы М по-прежнему считывается «длинная» строка.


Рисунок 9.3 – Структура ЗУ типа 2DM для ROM (a)

Классификация основных электронных устройств, перспективы развития.

Электронные устройства разделяются на аналоговые и цифровые.

Аналоговые электронные устройства (АУЭ) - это устройства усиления и обработки аналоговых электрических сигналов, выполненные на основе электронных приборов. Следует выделить две большие группы по которым можно классифицировать аналоговые электронные устройства:

* усилители - это устройства, которые за счет энергии источника питания формируют новый сигнал, являющийся по форме более или менее точной копией заданного, но превосходит его по току, напряжению, или по мощности..

* устройства на основе усилителей - в основном преобразователи электрических сигналов и сопротивлений.

Преобразователи электрических сигналов (активные устройства аналоговой обработки сигналов) - выполняются на базе усилителей, либо путем непосредственного применения последних со специальными цепями обратных связей, либо путем некоторого их видоизменения. Сюда относят устройства суммирования, вычитания, логарифмирования, антилогарифмирования, фильтрации, детектирования, перемножения, деления, сравнения и др. Преобразователи сопротивлений - выполняются на основе усилителей с обратными связями. Они могут преобразовывать величину, тип, характер сопротивления. Используют их в некоторых устройствах обработки сигналов. Особый класс составляют всевозможные генераторы и связанные с ними устройства.

Аналоговый сигнал представляет собой непрерывную функцию, с неограниченной по количеству значений в различные моменты времени. Наиболее часто встречающимся аналоговым сигналом являются звуки нашей речи, которые на осциллограммах имеют различные, причудливые формы. Аналоговые сигналы изменяются по тому же закону, что и описываемые им физические процессы.

Цифровые технологии (англ. Digital technology) основаны на представлении сигналов дискретными полосами аналоговых уровней, а не в виде непрерывного спектра. Все уровни в пределах полосы представляют собой одинаковое состояние сигнала. Цифровая технология работает, в отличие от аналоговой, с дискретными, а не непрерывными сигналами. Кроме того, сигналы имеют небольшой набор значений, как правило, два. Обычно это 0 и 1, которые в булевской алгебре имеют значения «Ложь» и «Истина» соответственно. Цифровые схемы состоят в основном из логических элементов, таких как AND, OR, NOT и др., а также могут быть связаны между собой счетчиками и триггерами. Цифровые технологии главным образом используются в вычислительной цифровой электронике, прежде всего компьютерах, в различных областях электротехники, таких как игровые автоматы, робототехника, автоматизация, измерительные приборы, радио- и телекоммуникационные устройства и т. д.

В состав электронных устройств входят: неуправляемые полупроводниковые выпрямители, управляемые полупроводниковые выпрямители, электронные усилители, генераторы синусоидальных колебаний, генераторы пилобразного напряжения, мультивибраторы (аналоговые), логические элементы (цифровые) и пр.

 

 

 


Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 3491; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.136.95 (0.01 с.)