Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Мутации внехромосомных факторов резистентности.

Поиск

Лекарствен-ное в-во

Мишень

Механизм ре-зистентности

Продукт плазмиды

Пенициллин

Клеточная стенка; Ингибирует ферменты, отвечающие за синтез клет. стенки

1.Ферментатив-ная инактива-ция.

2.Снижение количества или родства пенициллина.

3.Толерантность к бактерицид-ным эффектам антибиотиков 

b-лактамаза

Хлорамфени-кол

Рибосома. Ингибирование синтеза транспептидазы

1.Инактивирова-ние антибиотика ацетилирование его OH групп.

2.Изменения в транспорте антибиотиков

Ацетилтранс-фераза.

Макролиды

(эритромицин, олеандомицин) и линкозамиды

(линкомицин

клиндамицин стрептограмин B)

Рибосома. Ингибирование синтеза белка

 

Изменение рибосомы

N6 – диметил-лирование аденинового остатка в pPHK)

 

Метилаза

 

 

Сульфонамиды

Конкурентное ингибирование дигидро-птероатсин-тетаза

1.Замещение фермента чувствительного к сульфонамиду

2.Изменения

в транспорте

Дигидроптеро-атсинтетаза, резистентная к сульфонамиду

Триметоприм

Конкурентное ингибирование дигидрофолат-редуктазы.

Сверхпродукция дигидрофолат-редуктазы.

Дигидрофолат-редуктаза резистентная к триметоприму.

Тетрациклин

Рибосома. Ингибирование синтеза белков.

Изменения в транспорте

Антибиотика

Efflux-механизм.

Индуцибельные

Tet-белки.

Аминоглико-зиды:

 

 

 

Стрептомицин

Рибосома. Ингибирует

синтез белков

мембраны.

Изменения в

структуре

рибосом.

Модификация антибиотика

Ферментами.

Аминоглико-

зидфосфа-трансфераза

 

Активный ацетил.

Спектиномицин

 

-//-

Изменения в транспорте антибиотика

N-ацетилтранс-фераза

O-фосфотранс-фераза

O-нуклеотид-

трансфераза.

Неомицин, канамицин,

гентамицин и др.

 

-//-

 

-//-

O-аденилтранс-фераза.

Ацетилтранс-

фераза. 

Фузидовая кислота.

Ингибирование фактора элон-гации в бел-ковом синте- зе на уровне рибосомы.

Непроницаемость клетки для антибиотиков.

Ацетилтранс-фераза.

 

Ферментативная инактивация антибиотика происходит в среде за пределами клетки. Одиночные клетки поэтому беззащитны. Ферменты b-лактамазы инактивируют

b-лактамные антибиотики путем гидролиза еще до того, как они успеют проникнуть через клеточную мембрану и достичь пенициллинсвязывающих белков в ЦПМ.

Изменение сайтов-мишеней в качестве механизма резистентности показаны с случае многих антибиотиков. Однако прямое отношение доказано лишь в случае эритромицина и линкомицина. Механизмы резистентности к этим антибиотикам заключаются в специфическом N6-диметилировании 2-х адениновых остатков в рРНК, в результате чего, такие рибосомы в значительно меньшей степени связываются с антибиотиком (такое связывание привело бы к ингибированию белкового синтеза).

Efflux-механизм характерен для резистентности к тетрациклинам. Он связан с удалением из клетки этого антибиотика. Не исключено, что пониженное действие тетрациклина связано как с пониженным его восприятием клеткой, так и с efflux-механизмом.

Обходные механизмы лежат в основе плазмидной резистентности к сульфонамидам и триметоприму. Плазмиды обеспечивают клетки новым ферментом, заменяющий подавленный и нечувствительный к ингибирующему действию антибиотика.

Кроме всего перечисленного плазмиды определяют также и резистентность к тяжелым металлам и др.

· Резистентность к ртути и ртутьорганическим соединениям. Токсичность ионов ртути для бактериальной клетки определяется тем, что они очень легко связываются с сульфгидрильными группами мембранных белков и ферментов, ингибируя синтез макромолекул и др. действия ферментов.

· Резистентность к кадмию, который, связываясь с сульфгидрильными группами мембранных белков, прекращает клеточное дыхание.

· Резистентность к серебру (действует в том же направлении, что и кадмий).

А также ко многим другим веществам (медь, висмут, свинец, бор, хром, кобальт, никель, соединения цинка).

Эписомные элементы (плазмиды), обладающие способностью поддерживать собственное автономное состояние и независимость скорости репликации от регуляторных механизмов клетки-хозяина, также независимо могут мутировать, либо не влияя на поведение бактериальной клетки, либо в какой-то мере изменяя ее физиологические функции. [8, c. 264]

Обычно принято считать, что эписомные детерминанты контролируют невысокую резистентность; однако в действительности имеется немало наблюдений, противоречащих такому представлению. Наблюдался четко выраженный мутаторный эффект у штамма Salmonella typhi, выделенного от больного; штамм этот характеризовался наличием разных типов R-факторов: Sin, Тс, только Тс, или Тс, Sm. Культуры бактерий Salmonella typhi, Salmonella typhimurium и E. coli, инфицированные этими факторами, проявляли генетическую нестабильность и мутабельность детерминантов резистентности к высоким концентрациям антибиотиков. Высокая резистентность передавалась реципиентам при последующей конъюгации со скоростью, типичной для трансмиссивных элементов. Внехромосомная локализация детерминантов, контролирующих высокую резистентность, подтверждалась возможностью их элиминации. Генетический анализ мутаций у полирезистентных штаммов довольно сложен прежде всего потому, что в них могут сосуществовать независимые друг от друга комплексы детерминантов резистентности со своими автономными факторами передачи, и каждый такой комплекс может видоизменяться в результате разнообразных событий - мутаций, сегрегации или рекомбинаций. Фенотипическое выражение подобного рода изменений в состоянии генома бактериальной клетки часто взаимно маскируется и с трудом поддается дифференцированному тестированию.

Часто имеет место мутационное изменение генов, контролирующих репликацию самого фактора резистентности в естественных условиях. Такие мутации могут увеличить копийность плазмиды, что часто усиливает резистентность к большим концентрациям лекарственных и других веществ.

Иногда в мутациях затрагиваются регуляторные механизмы, контролирующие проявления конъюгативности бактерий. При этом может, например, сниматься репрессия донорской активности. 

Роль бактериального генома у сальмонелл нередко проявляется в ограничении функций внехромосомных элементов, в том числе и факторов трансмиссивной устойчивости к лекарственным веществам. Известно, например, что сальмонеллы обладают низкой реципиентной активностью. R-факторы воспринимаются ими, как правило, с незначительной частотой, что связывается с ограничением, контролируемым клеткой-хозяином. Под влиянием мутагенов можно получить мутанты R-факторов, способные преодолевать это ограничение. Такие мутанты были получены путем воздействия нитрозогуанидина на Salmonella typhimurium c R-фактором дикого типа; способность R-мутантов преодолевать ограничения представляется функцией, независимой от реципиентных свойств бактерии-хозяина.

Мутации по устойчивости к хлорамфениколу наблюдали еще в 1969г. у штамма Klebsiella c устойчивостью к пяти антибиотикам. При конъюгации маркеры резистентности передавались реципиентам из различных систематических групп грамотрицательных бактерий - эшерихий, шигелл, протеев и др., а также путем трансдукции с фагом Рlс из E. coli. Проявление мутационного эффекта только в отношении резистентности к одному антибиотику свидетельствует об индивидуальной генетической реакции отдельных детерминантов резистентности на воздействие мутагенов. [3, c. 149]

Это далеко не исчерпывающее описание возможных мутаций, котрых у плазмид может наблюдаться огромное множество.

Элиминация R-факторов.

Лекарственная устойчивость бактерий, детерминируемая трансмиссивными генетическими элементами, представляет серьезную угрозу ее неограниченного распространения, принимающего масштабы подлинной «пандемии» в микро мире, связанной с экологией человека и животных. Поэтому в настоящее время придается чрезвычайно важное значение исследованиям, направленным на изыскание путей предотвращения или по крайней мере существенного ограничения распространения лекарственной устойчивости у бактерий, составляющих микрофлору нестерильных полостей макроорганизма - человека, животных, птиц и даже возможных переносчиков бактериальных возбудителей инфекции.

Многими исследователями было замечено, что признаки устойчивости к лекарственным веществам у грамположительных и грамотрицательных бактерий, контролируемые внехромосомными детерминантами, нередко утрачиваются спонтанно или закономерно исчезают после обработки определенными соединениями, обладающими избирательной ДНК-тропностью. Этот феномен, обозначаемый термином «элиминация», связанный с утратой генетических детерминантов, в том числе плазмид и факторов резистентности, используется как одно из доказательств их внехромосомной локализации.

Изучение сущности и механизмов этого явления представляет большой не только теоретический, но и практический интерес, хотя до настоящего времени не удалось еще достигнуть такого эффекта элиминации, чтобы его можно было использовать в клинических целях. Задача поиска эффективных средств элиминации эписомных детерминантов резистентности осложняется, еще и тем обстоятельством, что большинство известных элиминирующих соединений является либо мутагенами, либо, кроме того, и канцерогенами, что налагает дополнительную ответственность на испытателей при оценке эффективных средств и практических рекомендаций. В качестве элиминирующих агентов наиболее широко используются при теоретических исследованиях акридиновые красители (акрихин, акридиновый оранжевый). При элиминации происходит необратимая утрата генетических элементов, локализованных вне хромосомы.

Механизмы, лежащие в основе элиминирующего действия акридиновых красителей, во многом остаются нерасшифрованными, однако методами генетического анализа четко показано, что при действии акридинов на бактерии, обладающие трансмиссивной резистентностью к антибиотикам, происходит полное подавление генетических и физиологических функций ее детерминантов. возможно, элиминация связана с блокированием репликации эписом либо нарушения участка ее инициирования, либо из-за нарушения прикрепления эписомных реплик к центрам бактериальных мембран, отвечающих за сегрегацию генетического материала в дочерних клетках.

Novick (1963) показал, что спонтанные пенициллиночувствительные варианты стафилококка с полной утратой пенициллиназной активности не мутируют ни спонтанно, ни после обработки мутагенами в направлении восстановления устойчивости к пенициллину. Эти же формы не дают и рекомбинантов дикого типа при скрещивании друг с другом, а также с мутантами, сохранившими низкий уровень образования этого фермента. 

Факторы трансмиссивной резистентности к лекарственным веществам, как отмечено ранее, ведут себя подобно другим внехромосомным элементам, которые в автономном, состоянии могут быть подвержены эффективному действию элиминирующих агентов. Поэтому некоторые общие положения, выявленные на других системах, могут быть приняты и для резистентных бактерий. [6, c. 98]

Отсутствие эффекта полной элиминации определенных внехромосомных детерминантов может быть следствием того, что в одной клетке имеется несколько различных R-факторов с различными наборами генов резистентности.

Помимо акридиновых красителей, за последнее время выявлены другие соединения с высокой элиминирующей активностью. Одним из таких соединений оказался бромид этидиума. Показано, что это соединение в низких концентрациях (5 ¸ 10 * Ю6 М, рН 7,2) вызывало у энтеробактерий практически полную элиминацию факторов R4, R22, в то время как другие, хорошо передающиеся при конъюгации факторы (R15 и R8) не элиминировались вообще. Причина, лежащая в основе этого различия, пока остается невыясненной. У стафилококков с пенициллиназной активностью также удалось с довольно высокой эффективностью (8—100%) освобождать клетки от плазмид, причем устойчивость к сулеме и образование пенициллиназы утрачивались одновременно, но без потери устойчивости к эритромицину. Примечательно, что на пенициллиназных плазмидах Staphylococcus aureus может находиться детерминант, определяющий устойчивость к этому препарату. Другим высокоактивным препаратом оказался додецилсульфат натрия, который не только приводил к элиминации R-факторов, но и вообще был более токсичен по отношению к R+ -клеткам, чем к клеткам без   R-факторов. Это служит еще одним примером лекарственной конверсии клеток. Аналогичным действием обладал 4-нитрохинолин-1-оксид.

С действием додецилсульфата натрия можно также сравнить действие пенициллина, который в суббактериостатических концентрациях вызывает устранение R-факторов из клеток Salmonella paratyphi (R)

В качестве элиминирующих агентов может выступать большое число соединений, в том числе и такие, которые являются естественными метаболитами (гуанин, глюкоза и некоторые детергенты освобождают клетки Staphylococcus aureus от плазмид с пенициллиназной активностью).

Большое число работ касается данных об элиминирующем действии повышенной температуры на культуры стафилококка с пенициллиназной активностью. Отмечается, что условия повышенной температуры вызывали не только появление негативных вариантов, но и селективно способствовали более быстрому росту последних.

Нужно учесть, что некоторые элиминирующие химические агенты в определенных концентрациях могут не только вызывать утрату устойчивости, но в силу своего мутагенного потенциала могут индуцировать ее в некоторых случаях. Учитывая, что все акридины являются в определенных условиях мутагенами, нельзя исключить подобный эффект, особенно при анализе свойств одномаркерных факторов резистентности, где фенотипическое выражение «элиминация» в действительности может отражать мутационное изменение, характеризующееся повреждением генов, контролирующих чувствительность к определенному веществу.



Поделиться:


Последнее изменение этой страницы: 2024-06-27; просмотров: 3; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.32.71 (0.009 с.)