Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

ДНҚ молекуласындағы бұзылыстардың қайта қалпына келуі

Поиск

Белгілі мутагендердің мутагендік және летальдық қасиеттері ДНҚ молекуласындағы құрылымдардың бұзылысымен сипатталады. Мысалы, адам геномында әруақытта кездейсоқ өзгерістер (бұзылыстар) болып отырады, бірақ-та олардың тек кейбіреулері ғана сақталады (өте сирек жағдайда). Яғни, азоттық негіздердің шамамен 1000 алмасуының тек біреуі ғана мутацияға әкеледі. Мұның себебі, мұндай бұзылыстардың барлығы организмде қайта қалпына келтіріліп отырады. ДНҚ молекуласының қайта қалпына келу процесі қалыпқа келу немесе ДНҚ-ның репарациясы деп аталады.

ДНҚ молекуласының қалпына келу сипаты жэне механизмі УК-сәулесімен индукцияланған бұзылыстардың мысалында толық зерттелген. УК-сәулелеріне сезімтал клеткалардың ДНҚ-да пиримидинді негіздердің пиримидинді димерлерге, оның ішінде тиминді димерге өзгерумен сипатталатын фотохимиялық бұзылыстар туындайды. Тиминді димердің түзілуі бір тізбек бойындағы көрші тиминді негіздің көміртегіне екінші тиминнің көміртегі байланысуымен сипатталады. Сэулеленуге ұшыраған ДНҚ молекуласында тиминдік димердан басқа цитозин-тиминді және цитозин-цитозинді димерлер де түзіледі. Бірақ-та олар көпшілік жағдайда сирек кездеседі. Гендегі негіздердің соңғы жағының димерленуі ДНҚ молекуласының транскрипциясы және репликациясының басылуына әкеледі. Ол сонымен қатар мутацияға да әкеледі, нэтижесінде клетка өлімге немесе малигнизация процесіне ұшырайды.

Көптеген организмдерде, оның ішінде адамда да, ДНҚ молекуласы бұзылысының қайта қалпына келуінің бір механизмі клеткаларды алдын ала УК-сәулесімен өңделген көрінетін жарықта экспозициялауға негізделген. Бұл клетканың өлімге ұшырауын бірнеше есеге төмендетеді. Бұл ДНҚ тізбегінде түзілген пиримидиндік димерлердің жарықтың және арнайы жарыққа тәуелді ферменттердің әсерінен ажырауымен сипатталады (фотореактивация). Сәулеленуге ұшыраған ДНҚ молекуласынан пиримидинді димерлерді жоюдың екінші механизмі қараңғы репарация немесе «кесу-қалпына келтіру» деген атпен белгілі. Бұл да фотореактивация сияқты ферменттер арқылы іске асырылады, бірақ-та бұл күрделі процес және қараңғыда жүреді. Мұнда тиминді димерлер ДНҚ-ның қалыпты бөлігі мен бұзылысқа ұшыраған бөлігіндегі нуклеотидтер арасындағы фосфодиэфирлік байланыстардың гидролизін тудыратын ДНҚ-ның репарациясына қатысатын нуклеаза ферменттері көмегімен «кеседі», нәтижесінде ол жерде бос кеңістік түзіледі. Сонан соң ДНҚ-полимераза ферменті арқылы комплементарлы принципке сай бос кеңістіктер қайта қалпына келтіріледі. ДНҚ молекулалары сәулеленуге ұшыраған клеткаларда пиримидиндік димерлердің жойылуы және түзілген бос кеңістіктің «кесілуі» және «жалғануы» және қант фосфаттық байланыстардың қалпына келуі ДНҚ-лигаза ферменті арқылы жүзеге асырылады. Сонымен бұл механизмнің іске асырылуына негізінен үш репарациялық ферменттер қатысады.

ДНҚ молекуласы бұзылысының қайта қалпына келуінің үшінші механизмін репликациядан кейін немесе рекомбинациялық қалпына келу деп аталады. УК-сәулесімен сәулеленген клеткалардағы ДНҚ синтезі димерге дейін қалыпты жүреді, әрі қарай ферменттің жылжуы бірнеше секундқа жай жүреді, сонан соң димердің келесі бетіне ауысып қайта қалыпты жүреді. Мұнда ДНҚ-полимераза ферменті димердің үстінен секіріп өткендіктен жаңадан түзіліп жатқан ДНҚ тізбегінде бос кеңістік түзіледі. Нәтижесінде жаңадан түзілген ДНҚ тізбегінде бос кеңістіктер, ал ескі тізбекте пиримидинді димерлер пайда болады. Яғни бір дуплексте димер түзілген аймақ жаңа түзілген тізбекте толық сақталады. Бұл процес жаңадан түзілген ДНҚ тізбегіндегі бос кеңістіктің келесі бір басқа бос кеңістікпен байланысу арқылы ДНҚ молекуласының репликациясынан кейінгі рекомбинациясымен аяқталады. Бұл байланыс қайта қалпына келу синтезіне мүмкіндік береді, яғни әр түзілген бос кеңістікте қалпына келу процесі жүреді. Әр кеңістікте жүретін рекомбинациялық құбылыс бастапқы әрі қарай репликацияға қабілетті ДНҚ молекуласының қалпына келуіне ықпалын тигізеді. ДНҚ молекуласының рекомбинациялық қалпына келуі бірнеше рекомбиназа белоктары көмегімен жүзеге асырылады.

Клеткалардың эволюциясы нәтижесінде оларда ДНҚ моле-куласы бұзылған жағдайда синтезделетін ферменттердің осы репарацияға қатысатын қасиеті қалыптасты. Мысалы, Е. соlі бактериясында SOS-репарация деп аталатын репарация ашылды. Яғни ДНҚ молекуласының репликациясы кезінде пайда болған қандай да болмасын бұзылыс нэтижесінде клеткада репарацияға қатысатын белоктардың синтезіне жауапты гендердің (15-тен көп) транскрипциясы артады. Бұл процесс клеткалардың өмір сүргіштігінің жоғары-лауымен сипатталады. Егер де ДНҚ молекуласында метильденген нуклеотидтер болатын болса, онда бұл кезде активтенетін репарациялық жүйе де белгілі болады. Осындай репарациялық жүйе эукариот клеткаларында да болуы мүмкін.

Адамда хромосомалық рецессивті белгі арқылы тұқым қуалайтын және терінің күн сәулесіне сезімталдылығымен сипатталатын «ксеродерма пигментозум» деп аталатын синдром белгілі. Нэтижесінде теріде шамадан тыс пигментация жүреді де, соңынан тері клеткалары малигнизацияға ұшырайды, яғни тері ісігі туындайды. Бұл синдромның пайда болуы ДНҚ молекуласында тиминді димерлердің кесілу қабілеттіліктерінің төмендігіне байланысты болады. Сондай-ақ күн сәулесіне жоғары сезімталдылықпен сипатталатын Блум синдромы да белгілі. Бұл да рецессивті тұқым қуалайды. Мұнда организмдегі хромосомалардың хроматидтік бөліктерде алмасулар жүреді және ол хромосомалық аберрациялармен сипатталады. Бұл ауруда іртүрлі ісік ауруларымен ауру жиілігі жоғары және ең негізгісі, мұнда ДНҚ молекуласының қалпына келу процесі мүлде жүрмейді. «Ксеродерма пигментозум» және Блум синдромдарымен ауыратын адамдарда иммундық жетіспеушілік болады.

ДНҚ молекуласының күн сәулесі (УК-компоненттерімен) арқылы қалыпты бұзылысы «кесілу-қалпына келу» арқылы қалпына келеді. Организмдегі кейбір клеткалардағы рентген сәулелері арқылы пайда болған бұзылыстар немесе екінші реттік бұзылыстар рекомбинация көмегімен немесе рекомбиназа-ферменттерінің қатысында басқа механизм арқылы қалпына келеді. Сонымен қатар, УК-сәулелері арқылы туындайтын ДНҚ молекуласындағы бұзылыстардан бөлек рентген сәулелерінен пайда болған ДНҚ бұзылыстары рекомбинация процесі арқылы репликацияға дейін қалпына келетіні анықталды.

ДНҚ молекуласындағы химиялық мутагендердің әсерінен туындайтын бүзылыстар жоғарыда сипатталған механизмдер арқылы іске асырылады. Организмдегі әр ДНҚ молекуласының қалпына келу механизмі негізінен сол ДНҚ-ның қорғаныш жүйесі болып табылады. Сонда да болса, ДНҚ молекуласының қалпына келуінде де нәтижесінде мутацияға әкелетін «қателер» болады.

Организмдегі репарация процесі механизмдерін қорытындылай келе, ДНҚ молекуласының бұзылысының репарациясы гендердің тұрақтылығын қамтамасыз етеді және ол ДНҚ-ның екі тізбегінің сақталуына негізделген деуге болады. Осының арқасында бұзылысқа ұшыраған бір тізбек сау келесі тізбектің арқасында қайта қалпына келе алады. Бірақ-та организмде генетикалық ақпараттардың сақтаушысы болса да олардың химиялық тұрақтылығы шектеулі. Клеткада өте жоғары жиілікте ДНҚ молекуласының тотығуы, ферментсіз метильденуі және гидролизі жүріп отырады. Бұл реакциялар ДНҚ-ның қалпына келуі процесімен әрекеттеседі. ДНҚ молекуласының кездейсоқ (спонтанды) ыдырауы мутагенездің, карциногенездің және организмнің қартаюының негізгі факторы болуы мүмкін деп есептеледі. Сонымен, ДНҚ молекуласы қарама-қарсы құрылым болып табылады. Бір жағынан, яғни тұрақтылық жағынан қарасаңыз ол өте консервативті, ал екінші жағынан қарасаңыз ол ыдырауға дайын тұрады.

Транскрипция

Транскрипция (лат. transcrіptіo – қайта көшіріп жазу) – тірі жасушалардағы рибонуклеин қышқылының биосинтез процесі. Ол дезоксирибонуклеин қышқылы (ДНҚ) матрицасында жүреді. Транскрипция аденин, гуанин, тиминжәне цитозиннің қайталанбалы тізбегінен тұратын ДНҚ молекуласындағы генетикалық ақпараттың іске асуының бірінші кезеңі. Транскрипция арнайы ДНҚ және РНҚ полимераза ферменті арқылы жүреді. Транскрипция нәтижесінде РНҚ молекуласының полимерлі тізбегі түзіледі. Бұл тізбек ДНҚ молекуласының көшірілген бөлігіне комплементарлы болады.

Транскрипция үш кезеңнен тұрады: инициация, элонгация жəне терминация.

Инициация

Инициация (синтездің басталуы) ДНҚ молекуласында транскрипция басталатын жерге жақын тұрған ДНҚмолекуласында нуклеотидтерімен, промотормен, РНҚ-полимеразаның байланысуымен басталады. Бірінші нуклеотидтің транскрипт синтезіне кіретін жері "бастау нүктесі" деп аталады. Мутантты бактериялардың ген транскрипциясын зерттегенде промотордың ұзындығы 30-60 жұп нуклеотидтерден тұратындығы анықталды. Сигналды тану қызметін 10 ж.н. атқарады, оның орталығы бастау нүктесінен 10 ж.н. шамасындай қашықтықта болады. Мысал үшін глюкозаоперонының промотор нуклеотидтерінің реттілігі жəне бастау нүктесі (А) келтірілген.

Элонгация

Элонгация (тізбектің ұзаруы). Сигма-суббөлік ферменттен бөлініп шығысымен, минималдық фермент транскрипция процесін жалғастыра береді. ДНҚ-матрицада түзіліп жатқан РНҚ тізбегі ұзара береді. Фермент ДНҚ молекуласының бойымен жүреді, түзіліп жатқан РНҚ тізбегінің нуклеотидтік реттілігі ДНҚ молекуласымен анықталады. Элонгацияның ең үлкен жылдамдығы бір секундта 50 нуклеотид шамасындай тізбекке кіреді. Бір геннен көптеген РНҚ көшірмесін алады.

Терминация

Терминация (синтездің аяқталуы). РНҚ тізбегінің ұзаруы ДНҚ молекуласындағы аяқтаушы нуклеотидтерге жеткенше жүре береді. Одан кейін фермент нуклеотидтерді тізбекке кіргізбейді, РНҚ ДНҚ-матрицадан бөлініп шығады. Ал ДНҚ тізбектері бірігіп қалыпты қос спираль түзіледі. Транскрипцияны тоқтататын ДНҚ молекуласындағы нуклеотидтер терминатор деп аталады. Транскрипцияны тоқтату үшін жəне РНҚ-полимеразаны ДНҚ-матрицадан айыру үшін ерекше ақуыз болады, ол Þ(по) ақуыз деп аталады, ол тетрамер М 200 000. Ақуыз þ РНҚ-полимеразаны РНҚ-ның соғынан шығарып тастайды, РНҚ-транскрипттың босанып шығуына себепші болады.

 

Типі

Транскрипция процесінің өнімі әр түрлі қызметтер атқаратын РНҚ молекуласының төрт типінен тұрады:

1. рибосомадағы ақуыз синтезінде матрицаның рөлін атқаратын ақпараттық немесе матрицалық РНҚ;

2. рибосоманың құрылымдық бөлігін құрайтын рибосомалы РНҚ;

3. ақуыз синтезі кезінде генетикалық ақпараттың РНҚ-дағы нуклеотидтік “тілді” аминқышқылдық “тілге” ауыстыруға қатысатын тасымалдаушы РНҚ;

4. ДНҚ молекуласының репликациясы (генетикалық ақпаратты дәл көшіруді және оның ұрпақтан ұрпаққа берілуін қамтамасыз ететін нуклеин қышқылдары макромолекуласының өздігінен жаңғыру процесі) кезінде бастама қызметін атқаратын РНҚ.

Транскрипция бірлігін атқаратын қызметі бір-біріне байланысты ферменттер синтезін анықтайтын гендер тобын ``оперон`` деп атайды. Прокариоттарда ол функционалды байланысқан бірнеше геннен, ал эукариоттарда тек бір ғана геннен тұрады. РНҚ-полимераза ферменті оперонның бастапқы бөлігін (промотор) “таниды”, онымен байланысып, ДНҚ молекуласының қос тізбегін ширатады. Осы жерден бастап мономерлі нуклеотидтер комплементарлы шартқа (принципке) сай РНҚ молекуласын түзеді. РНҚ-полимераза ферментінің ДНҚ-матрицасымен жылжуына байланысты синтезделген РНҚ молекуласы алшақтай береді де, ДНҚ-ның қос тізбегі қайта қалпына келеді. РНҚ-полимераза көшірілетін бөліктің соңына жеткенде (терминатор) РНҚ молекуласы матрицадан ажырайды. ДНҚ молекуласының әр түрлі бөліктеріндегі көшірмелер саны жасушаның қандайда болмасын ақуызды қажетсінуіне және қоршаған орта жағдайларына байланысты болады. Транскрипция процесінің реттелуін зерттеу молекулалық биологияның маңызды міндеттерінің бірі болып саналады. Ақпараттың көшірілуі ДНҚ молекуласынан РНҚ-ға ғана емес, сондай-ақ, кері бағытта, РНҚ-дан ДНҚ-ға да көшірілуі мүмкін. Мұндай кері Транскрипция құрамында РНҚ молекуласы бар ісік тудыратын вирустарда болады. Олардың құрамында жасуша зақымданғаннан кейін вирустың РНҚ-сын ДНҚ тізбегін синтездеуге матрица ретінде қолданатын фермент болады. Соның нәтижесінде ДНҚ молекуласының бір тізбегі, яғни ДНҚ – РНҚ гибриді түзіледі. Алғашқы РНҚ молекуласының барлық ақпаратын алып жүретін вируспен зақымданған қос спиральды ДНҚ молекуласы жасушаның хромосомасына еніп, қатерлі ісік тудырады. Кері Транскрипцияның ашылуы Ресей ғалымы Л.А. Зильбер (1894 – 1966) ұсынған қатерлі ісік вирусты-генетикалық теорияның дұрыс екенін дәлелдеді. Кері Транскрипция қалыпты жасушаларда ақпараттың жинақталуында және оның іске асуында (мысалы, эмбрионды даму кезеңінде) маңызды рөл атқаруы мүмкін.

Трансляция

Трансляция— полипептид тізбегінің гендегі аРНҚ негізінде ақпаратқа сай түзілуі. Трансляция болашақ белокқа тән аРНҚ-на жазылған нуклеотидтер кезегін түзілетін белоктардың амин қьішқылдарының кезегіне айналдырады. Бұл жұмысқа аРНҚ-нан басқа рибосомалар, тРНҚ, аминоацил синтетазалар, белоктан тұратын инициация, элонгация және терминация факторлары қосылған күрделі құрамдар қатынасады.

 

Пайдаланылған әдебиеттер:

Вирусология, иммунология, генетика, молекулалық биология. Орысша-қазақша сөздік. – Алматы, «Ана тілі» баспасы, 1993 жыл. ISBN 5-630-0283-X

Биохимия. Медицина университеті баспасы. Алматы

Жоғарыға көтеріліңіз↑ «Қазақстан»: Ұлттық энцклопедия / Бас редактор Ә. Нысанбаев – Алматы «Қазақ энциклопедиясы» Бас редакциясы, 1998 ISBN 5-89800-123-9, VIII том

                   

Вирусология, иммунология, генетика, молекулалық биология. Орысша-қазақша сөздік. – Алматы, «Ана тілі» баспасы, 1993 жыл. ISBN 5-630-0283-X

 

 



Поделиться:


Последнее изменение этой страницы: 2024-06-17; просмотров: 6; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.93.9 (0.01 с.)