Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основні закономірності термодинаміки необоротних процесів

Поиск

 

Розглянемо найбільш загальні формулювання аксіом термодинаміки необхідних процесів, що належать Онзагеру.

Метод Онзагера базується на ряді аналогій з механікою. З механіки відомо, що швидкість стаціонарного руху тіла (потоку) пропорційна діючій на нього силі. Це положення Онзагер розповсюдив і на всі стаціонарні необоротні термодинамічні процеси.

Перший постулат Онзагера дозволяє описати потоки. Вважається, що будь-який потік речовини, тепла, струму (І) пропорційний діючій у системі термодинамічній силі (х). Припущення про лінійний характер зв'язків у термодинамічних рівняннях, що зв'язують потік і силу, яка його викликає, є першим положенням теорії Онзагера.

У найпростішому випадку для одного потоку і однієї сили, що його викликає,

                                                     ,                                          (7.1)

де L – деякий феноменологічний фактор Онзагера.

Якщо в системі є "і" потоків і "к" сил, що їх викликають, то, враховуючи взаємодію потоків між собою, в загальному випадку одержимо рівняння

                                                 .                                      (7.2)

Вважається, що і–тий потік залежить від всіх термодинамічних сил, що діють в системі. Це – друге положення теорії Онзагера. Діагональні коефіцієнти Li при і = к показують вплив сили на свій потік (наприклад, теплової сили на тепловий потік), а при і ¹ к показують вплив даної сили на чужий потік (наприклад, теплової сили на дифузію).

Третє положення теорії Онзагера випливає з припущення, що дія сили на чужі потоки симетрична. Наприклад, теплова сила діє на дифузійний потік таким же чином, як дифузійна сила на тепловий потік, тобто

                                                  .                                       (7.3)

Останнє положення відоме як співвідношення взаємності Онзагера і має важливу роль в термодинаміці необоротних процесів.

Важливим в термодинаміці необоротних процесів є висвітлення того, що слід розуміти в кожному випадку під термодинамічною силою. Для вирішення цього питання знов використовують аналогію з механікою. З механіки відомо, що швидкість зміни енергії (Е) в системі дорівнює добутку швидкості потоку (І) на силу (х), тобто

                                                     .

Як термодинамічний аналог величини  можна прийняти зміну ентропії (DS) за одиницю часу в одиниці об'єму (V):

                                                ,

і далі, поділивши на Dt, одержимо:

                                              

або

                                                   .                                        (7.4)

Багато які металургійні процеси проходять з передачею теплоти. Як приклад, знайдемо швидкість зміни ентропії при передачі теплоти від одного резервуара до іншого через перегородку (рис. 7.1). Ентропія буде збільшуватись за рахунок передачі теплоти від резервуара з температурою Т2 до резервуара з температурою Т1. Припустимо, що від резервуара з температурою Т2 відібрано Q теплоти і ця теплота передана через перегородку в резервуар з температурою Т1. При цьому ентропія першого резервуара зміниться на , а другого – на .

Загальна зміна ентропії при переході такої кількості теплоти через перегородку дорівнює сумі: DS = DS1 + DS2, тобто

                         .             (7.5)

З рівняння (7.4) знаходимо швидкість зміни ентропії

                                .                     (7.6)

Додатний потік (w) теплоти в напрямку зменшення температури однаковий на обох кінцях перегородки.

При стаціонарному процесі передача теплоти вздовж перегородки речовини певного складу  є сталою величиною. При підрахунку координати х вздовж перегородки від гарячого кінця величина градієнта є від'ємною <0. Враховуючи це, температуру між гарячим кінцем перегородки (Т2; х=0) і холодним кінцем або будь-яким перерізом з координатою (х) і температурою (Т1) можна представити таким чином

                                         .                              (7.7)

У випадку стаціонарного процесу при невеликій різниці температур DТ(DТ<<Т1)

                               ,                   (7.8)

звідки швидкість зміни ентропії в одиниці об'єму перегородки (V = sDх, де s – площа перегородки; Dх – її товщина)

                          ,               (7.9)

але                                    і ,                           (7.10)

де І – тепловий потік через перегородку на осі х, тобто кількість теплоти, що проходить через одиницю перерізу перегородки за одиницю часу.

Підставивши ці значення в рівняння (7.7), одержимо

                                                                                     (7.11)

або                                         .                                  (7.12)

Зіставляючи рівняння (7.4) і (7.12), знаходимо, що теплова сила

                                                 .                                    (7.13)

Онзагер узагальнив цей висновок і показав, що для будь-якого потоку

                                                  ,

де Іі – потоки і хі – сили, що їх викликають.

Аналогічно можна одержати вирази для інших термодинамічних сил. Наприклад, для дифузійного потоку:

                                                ,

де m – маса дифундуючої речовини (термодинамічна сила);

                                             ,

де m - хімічний потенціал дифундуючої речовини.

Якщо дифузія протікає в ізотермічних умовах, то .

Подібним чином підходять до розгляду будь-яких стаціонарних необоротних металургійних процесів.

 



Поделиться:


Последнее изменение этой страницы: 2021-12-15; просмотров: 31; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.148.108.174 (0.007 с.)