Электропроводность полупроводников n -типа. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Электропроводность полупроводников n -типа.



Полупроводник — материал, который по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками и отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры.
Для того, чтобы получить полупроводник n-типа, собственный полупроводник легируют донорами. Обычно это атомы, которые имеют на валентной оболочке на один электрон больше, чем у атомов полупроводника, который легируется. При не слишком низких температурах электроны и со значительной вероятностью переходят с донорных уровней в зону проводимости, где их состояния делокализованы и они могут вносить вклад в электрический ток.
Полупроводники p-типа получают методом легирования собственных полупроводников акцепторами. Для полупроводников четвёртой группы периодической таблицы, таких как кремний и германий, акцепторами могут быть примеси химических элементов третьей группы — бор, алюминий.

7)

Работа целого ряда полупроводниковых приборов (диодов, транзисторов, тиристоров и др.) основана на явлениях, возникающих в контакте между полупроводниками с разными типами проводимости, либо в точечном контакте полупроводника с металлом. Граница между двумя областями монокристалла полупроводника, одна из которых имеет электропроводность типа p, а другая – типа n называется электронно-дырочным переходом. Концентрации основных носителей заряда в областях p и n могут быть равными или существенно отличаться.

p-n -переход, у которого концентрации дырок и электронов практически равны, называют симметричным. Если концентрации основных носителей заряда различны (или) и отличаются в 100...1000 раз, то такие переходы называют несимметричными. Несимметричные p-n -переходы используются шире, чем симметричные, поэтому в дальнейшем будем рассматривать только их.

Рассмотрим монокристалл полупроводника (рис. 1.12) в котором с одной стороны введена акцепторная примесь, обусловившая возникновение здесь электропроводности типа p, а с другой стороны введена донорная примесь, благодаря которой там возникла электропроводность типа n. Каждому подвижному положительному носителю заряда в области p (дырке) соответствует отрицательно заряженный ион акцепторной примеси, но неподвижный, находящийся в узле кристаллической решетки, а в области n каждому свободному электрону соответствует положительно заряженный ион донорной примеси, в результате чего весь монокристалл остается электрически нейтральным.


Рис. 1.12. Начальный момент образования p-n -перехода

Свободные носители электрических зарядов под действием градиента концентрации начинают перемещаться из мест с большой концентрацией в места с меньшей концентрацией. Так дырки будут диффундировать из области p в область n, а электроны – наоборот, из области n в область p. Это направленное навстречу друг другу перемещение электрических зарядов образует диффузионный ток p-n -перехода. Но как только дырка из области p перейдет в область n, она оказывается в окружении электронов, являющихся основными носителями электрических зарядов в области n. Поэтому велика вероятность того, что какой-либо электрон заполнит свободный уровень в дырке и произойдет явление рекомбинации, в результате которой не будет ни дырки, ни электрона, а останется электрически нейтральный атом полупроводника. Но если раньше положительный электрический заряд каждой дырки компенсировался отрицательным зарядом иона акцепторной примеси в области p, а заряд электрона – положительным зарядом иона донорной примеси в области n, то после рекомбинации дырки и электрона электрические заряды неподвижных ионов примесей, породивших эту дырку и электрон, остались не скомпенсированными. И в первую очередь не скомпенсированные заряды ионов примесей проявляют себя вблизи границы раздела (рис. 1.13), где образуется слой пространственных зарядов, разделенных узким промежутком. Между этими зарядами возникает электрическое поле, которое называют полем потенциального барьера, а разность потенциалов на границе раздела двух зон, обусловливающих это поле, называют контактной разностью потенциалов.


Рис. 1.13. p-n -переход при отсутствии внешнего напряжения

Это электрическое поле начинает действовать на подвижные носители электрических зарядов. Так дырки в области p – основные носители, попадая в зону действия этого поля, испытывают со стороны него тормозящее, отталкивающее действие и, перемещаясь вдоль силовых линий этого поля, будут вытолкнуты вглубь области p. Аналогично, электроны из области n, попадая в зону действия поля потенциального барьера, будут вытолкнуты им вглубь области n. Таким образом, в узкой области, где действует поле потенциального барьера, образуется слой, где практически отсутствуют свободные носители электрических зарядов и вследствие этого обладающий высоким сопротивлением. Это так называемый запирающий слой.

Если же в области p вблизи границы раздела каким-либо образом окажется свободный электрон, являющийся неосновным носителем для этой области, то он со стороны электрического поля потенциального барьера будет испытывать ускоряющее воздействие, вследствие чего этот электрон будет переброшен через границу раздела в область n, где он будет являться основным носителем. Аналогично, если в области n появится неосновной носитель – дырка, то под действием поля потенциального барьера она будет переброшена в область p, где она будет уже основным носителем, Движение неосновных носителей через p-n -переход под действием электрического поля потенциального барьера обусловливает составляющую дрейфового тока.

При отсутствии внешнего электрического поля устанавливается динамическое равновесие между потоками основных и неосновных носителей электрических зарядов, то есть между диффузионной и дрейфовой составляющими тока p-n -перехода, поскольку эти составляющие направлены навстречу друг другу.

Потенциальная диаграмма p-n -перехода изображена на рис. 1.13, причем за нулевой потенциал принят потенциал на границе раздела областей. Контактная разность потенциалов образует на границе раздела потенциальный барьер с высотой. На рис. 1.13 изображен потенциальный барьер для электронов, стремящихся за счет диффузии перемещаться справа налево (из области n в область p). Если отложить вверх положительный потенциал, то можно получить изображение потенциального барьера для дырок, диффундирующих слева на право (из области p в область n).

При отсутствии внешнего электрического поля и при условии динамического равновесия в кристалле полупроводника устанавливается единый уровень Ферми для обеих областей проводимости.

Однако, поскольку в полупроводниках p -типа уровень Ферми смещается к потолку валентной зоны, а в полупроводниках n -типа – ко дну зоны проводимости, то на ширине p-n -перехода диаграмма энергетических зон (рис. 1.15) искривляется и образуется потенциальный барьер:

, (1.13)

где – энергетический барьер, который необходимо преодолеть электрону в области, чтобы он мог перейти в область p, или аналогично для дырки в области p, чтобы она могла перейти в область n.

Высота потенциального барьера зависит от концентрации примесей, так как при ее изменении изменяется уровень Ферми, смещаясь от середины запрещенной зоны к верхней или нижней ее границе.


Рис. 1.14. Зонная диаграмма p-n -перехода, иллюстрирующая баланс токов в равновесном состоянии

 

 

8)Пробой p-n перехода;

Пробоем называют резкое изменение режима работы p-n -перехода, находящегося под большим обратным напряжением. ВАХ для больших значений обратных напряжений показана на рис. 1.5

 

Рис. 1.5

Началу пробоя соответствует точка А. После этой точки дифференциальное сопротивление перехода стремится к нулю.

Различают три вида пробоя p-n -перехода:

I.Туннельный пробой (А-Б),

II.Лавинный пробой (Б-В),

III. Тепловой пробой (за т.В).

Туннельный пробой возникает при малой ширине p-n -перехода (например, при низкоомной базе), когда при большом обратном напряжении электроны проникают за барьер без преодоления самого барьера. В результате туннельного пробоя ток через переход резко возрастает и обратная ветвь ВАХ идет перпендикулярно оси напряжений вниз.

Лавинный пробой возникает в том случае, если при движении до очередного соударения с нейтральным атомом кристалла электрон или дырка приобретают энергию, достаточную для ионизации этого атома, при этом рождаются новые пары электрон-дырка, происходит лавинообразное размножение носителей зарядов; здесь основную роль играют неосновные носители, они приобретают большую скорость. Лавинный пробой имеет место в переходах с большими удельными сопротивлениями базы («высокоомная база»), т.е. в p-n -переходе с широким переходом.

Тепловой пробой характеризуется сильным увеличением тока в области p-n -перехода в результате недостаточного теплоотвода.

Если туннельный и лавинный пробои, называемые электрическими, обратимы, то после теплового пробоя свойства перехода меняются вплоть до разрушения перехода.

9)Основой полупроводникового диода является р - n -переход, определяющий его свойства, характеристики и параметры. В зависимости от конструктивных особенностей р - n -перехода и диода в целом полупроводниковые диоды изготовляются как в дискретном, так и в интегральном исполнении. По своему назначению полупроводниковые диоды подразделяются на выпрямительные (как разновидность выпрямительных – силовые), импульсные, высокочастотные и сверхвысокочастотные, стабилитроны, трехслойные переключающие, туннельные, варикапы, фото- и светодиоды. Условные графические обозначения диодов показаны на рис. 1.10.

  Рис. 1.10 Условные графические обозначения: а – выпрямительные и универсальные;
б – стабилитроны; в – двухсторонний стабилитрон; г – туннельный диод;
д – обращенные диоды; е – варикап; ж – фотодиодов; з – светодиод

В зависимости от исходного полупроводникового материала диоды подразделяются на германиевые и кремниевые. Туннельные диоды изготовляются также на основе арсенида галия GaAs и антимонида индия InSb. Германиевые диоды работают при температурах не выше +80 °С, а кремниевые – до +140 °С.

По конструктивно-технологическому признаку диоды делятся на плоскостные и точечные. Наиболее распространены плоскостные сплавные диоды, применение которых затруднительно лишь на повышенных частотах. Преимуществом точечных диодов является низкое значение емкости p-n-перехода, дающая возможность их работы на высоких сверхвысоких частотах.

10) Вольт-амперная характеристика p-n-перехода – это зависимость тока через p-n -переход от величины приложенного к нему напряжения. Ее рассчитывают исходя из предположения, что электрическое поле вне обедненного слоя отсутствует, т. е. все напряжение приложено к p-n -переходу. Общий ток через p-n -переход определяется суммой четырех слагаемых:

, (1.15)

где – электронный ток дрейфа;

– дырочный ток дрейфа;

– электронный ток диффузии;

– дырочный ток диффузии;

– концентрация электронов, инжектированных в p- область;

– концентрация дырок, инжектированных в n- область.

При этом концентрации неосновных носителей и зависят от концентрации примесей и следующим образом:

,,

где, – собственные концентрации носителей зарядов (без примеси) электронов и дырок соответственно.

Скорость диффузии носителей заряда можно допустить близкой к их скорости дрейфа в слабом электрическом поле при небольших отклонениях от условий равновесия. В этом случае для условий равновесия выполняются следующие равенства:

,.

Тогда выражение (1.15) можно записать в виде:

  (1.16)

Обратный ток можно выразить следующим образом:

,

где – коэффициент диффузии дырок или электронов; – диффузионная длина дырок или электронов. Так как параметры,,, очень сильно зависят от температуры, обратный ток иначе называют тепловым током.

При прямом напряжении внешнего источника экспоненциальный член в выражении (1.16) быстро возрастает, что приводит к быстрому росту прямого тока, который как уже было отмечено, в основном определяется диффузионной составляющей.

При обратном напряжении внешнего источника экспоненциальный член много меньше единицы и ток p-n -перехода практически равен обратному току, определяемому, в основном, дрейфовой составляющей. Вид этой зависимости представлен на рис. 1.19. Первый квадрант соответствует участку прямой ветви вольт-амперной характеристики, а третий квадрант – обратной ветви. При увеличении прямого напряжения ток p-n -перехода в прямом направлении вначале возрастает относительно медленно, а затем начинается участок быстрого нарастания прямого тока, что приводит к дополнительному нагреванию полупроводниковой структуры. Если количество выделяемого при этом тепла будет превышать количество тепла, отводимого от полупроводникового кристалла либо естественным путем, либо с помощью специальных устройств охлаждения, то могут произойти в полупроводниковой структуре необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток p-n -перехода необходимо ограничивать на безопасном уровне, исключающем перегрев полупроводниковой структуры. Для этого необходимо использовать ограничительное сопротивление последовательно подключенное с p-n -переходом.


Рис. 1.19. Вольт-амперная характеристика p-n -перехода

При увеличении обратного напряжения, приложенного к p-n -переходу обратный ток изменяется незначительно, так как дрейфовая составляющая тока, являющаяся превалирующей при обратном включении, зависит в основном от температуры кристалла, а увеличение обратного напряжения приводит лишь к увеличению скорости дрейфа неосновных носителей без изменения их количества. Такое положение будет сохраняться до величины обратного напряжения, при котором начинается интенсивный рост обратного тока – так называемый пробой p-n-перехода.

11)

Классификация транзисторов



Поделиться:


Последнее изменение этой страницы: 2021-12-15; просмотров: 37; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.131.72 (0.029 с.)