Электропроводность полупроводников р-типа. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Электропроводность полупроводников р-типа.



Электропроводность полупроводников р-типа.

Классификация транзисторов

По основному полупроводниковому материалу

Помимо основного полупроводникового материала, применяемого обычно в виде монокристалла, транзистор содержит в своей конструкции легирующие добавки к основному материалу, металл выводов, изолирующие элементы, части корпуса (пластиковые или керамические). Иногда употребляются комбинированные наименования, частично описывающие материалы конкретной разновидности (например, «кремний на сапфире» или «металл-окисел-полупроводник»). Однако основными являются транзисторы на основе кремния, германия, арсенида галлия.

Другие материалы для транзисторов до недавнего времени не использовались. В настоящее время имеются транзисторы на основе, например, прозрачных полупроводников для использования в матрицах дисплеев. Перспективный материал для транзисторов — полупроводниковые полимеры. Также имеются отдельные сообщения о транзисторах на основе углеродных нанотрубок, о графеновых полевых транзисторах.

По структуре

Транзисторы биполярные

Транзисторы полевые

p-n-p

n-p-n

с p-n-переходом

с изолированным затвором

с каналом n-типа

с каналом p-типа

со встроенным каналом

с индуцированным каналом

Принцип действия и способы применения транзисторов существенно зависят от их типа и внутренней структуры, поэтому подробная информация об этом отнесена в соответствующие статьи.

Биполярные

транзисторы n-p-n структуры, «обратной проводимости».

транзисторы p-n-p структуры, «прямой проводимости»

Полевые

с p-n переходом

с изолированным затвором

Однопереходные

Криогенные транзисторы (на эффекте Джозефсона)

Многоэммитерные транзисторы

Баллистические транзисторы

Одномолекулярный транзистор

Комбинированные транзисторы

Транзисторы со встроенными резисторами (Resistor-equipped transistors (RETs)) — биполярные транзисторы со встроенными в один корпус резисторами.

Транзистор Дарлингтона — комбинация двух биполярных транзисторов, работающая как биполярный транзистор с высоким коэффициентом усиления по току.

на транзисторах одной полярности

на транзисторах разной полярности

Лямбда-диод — двухполюсник, комбинация из двух полевых транзисторов, имеющая, как и туннельный диод, значительный участок с отрицательным сопротивлением.

Биполярный транзистор с изолированным затвором (IGBT) — силовой электронный прибор, предназначенный в основном, для управления электрическими приводами

По мощности

По рассеиваемой в виде тепла мощности различают:

маломощные транзисторы до 100 мВт

транзисторы средней мощности от 0,1 до 1 Вт

мощные транзисторы (больше 1 Вт).

По исполнению

дискретные транзисторы

корпусные

для свободного монтажа

для установки на радиатор

для автоматизированных систем пайки

бескорпусные

транзисторы в составе интегральных схем.

По материалу и конструкции корпуса

металло-стеклянный

пластмассовый

керамический

Прочие типы

Одноэлектронные транзисторы содержат квантовую точку (т. н. «остров») между двумя туннельными переходами. Ток туннелирования управляется напряжением на затворе, связанном с ним ёмкостной связью.

Биотранзистор

Рис. 2

 

12)

Изучим принцип усиления биполярного транзистора, для чего обратимся к рисунку 4.2, на котором изображено движение носителей заряда в транзисторе p-n-p структуры, включённом по схеме с общей базой. На нём протяжённости областей отражены без соблюдения масштаба и реальных размеров.

 

 

На рисунке знаком плюса, обведённого в кружок, показаны дырки, а знаком обведённого в кружок минуса – электроны. В связи с тем, что в работе компонента участвуют и электроны, и дырки, такой транзистор именуют биполярным. Выводы база-эмиттер транзистора будем считать входом каскада, а выводы база-коллектор – его выходом.

Благодаря включению двух источников питания переход база-коллектор закрыт, а переход база-эмиттер открыт. Из-за этого по переходу база-эмиттер будет течь эмиттерный ток, порождённый движением преимущественно электронов. Он течёт по цепи от положительного полюса источника питания база-эмиттер, по резистору R1, от области эмиттера транзистора к области базы, а затем к отрицательному полюсу этого же источника питания. Резистор R1 символизирует внутреннее сопротивление источника сигнала. Направление протекания тока символически стрелками отражено на рисунке. Эффективность инжекции характеризует коэффициент инжекции. В данном случае он равен отношению тока эмиттера, вызванного движением только основных носителей заряда, к полному току эмиттера, обусловленному миграцией и дырок, и электронов. Область базы обогащается инжектируемыми носителями заряда, которые в области эмиттера были основными, а в области базы стали неосновными. Поле коллекторного перехода является ускоряющим для попавших в область базы носителей зарядов, и это поле их втягивает в коллекторный переход. Происходит их рекомбинация с основными носителями заряда области базы. Однако она незначительна в связи с тем, что толщина области базы много меньше, чем двух других областей, и электроны почти беспрепятственно преодолевают область базы и оказываются в области коллектора, в которой они вновь станут основными носителями заряда. Успевшие рекомбинировать электроны вызывают протекание небольшого тока через вывод базы транзистора, который называют рекомбинационным. Рекомбинация некоторого количества носителей заряда в области базы происходит постоянно до тех пор, пока каскад не будет обесточен, так как электроны будут всё время поступать от положительного полюса источника питания база-эмиттер. Обогащение области коллектора носителями заряда, которые в ней будут основными, приводит к протеканию коллекторного тока транзистора. Он течёт по цепи от положительного полюса источника питания база-коллектор, по области базы, затем по области коллектора, по нагрузочному резистору R2, к отрицательному полюсу источника питания. Очевидно, что даже незначительное изменение напряжения база-эмиттер вызывает существенно большее изменение напряжения база-коллектор и, отдавая небольшую мощность управляющего сигнала, поданного на базу транзистора, можно управлять многократно большей мощностью нагрузки. Следовательно, рассматриваемый каскад может осуществить усиление сигнала по напряжению. Ток эмиттера транзистора при любом варианте включения последнего равен сумме токов коллектора и базы.

Амплитуду тока коллектора транзистора можно вычислить по формуле:

Iк = Iэ • h21б + Iкбо,

где Iэ – ток эмиттера, А;

h21б или α – дифференциальный коэффициент передачи тока, который поступает в коллектор из эмиттера. Он равен отношению изменения тока коллектора к изменению тока эмиттера при фиксированных значениях температуры, напряжения база-коллектор и прочего: h21б = ΔIк / ΔIэ.

Iкбо – обратный ток коллектора транзистора, А.

Кроме того, ток коллектора транзистора допустимо найти согласно выражению:

Iк = Iб • h21э + Iкэо,

где Iб – ток базы, А;

h21э или β – это дифференциальный коэффициент передачи тока базы, соответствующий включению транзистора по схеме с общем эмиттером. Коэффициент h21э равен отношению приращения тока коллектора к приращению тока базы: h21э = ΔIк / ΔIб;

Iкэо – обратный ток коллектора при включении транзистора по схеме с общим эмиттером, А.

Коэффициенты h21э и h21б связаны друг с другом соотношением:

h21э = h21б / (1 – h21б).

Рассмотренный дифференциальный коэффициент передачи эмиттерного тока h21б относят к одному из основных параметров транзистора. Коэффициент передачи тока эмиттера в описанном каскаде близок к единице и h21б обычно составляет от 0,94 до 0,999. Это означает, что усилительный каскад с транзистором, включённым по схеме с общей базой, не даёт усиления по току. Коэффициент усиления сигнала по мощности равен произведению коэффициентов усилений сигнала по току и по напряжению. Следовательно, данный каскад даёт чуть меньшее усиление по мощности, чем по напряжению.

Для усиления сигналов любые транзисторные каскады тратят энергии источников питания, к которым подключены, и при этом всегда теряют часть энергии, и мощности потерь вызывают тепловыделения в компонентах.

 

 

13. Принцип действия полевых транзисторов с управляющим p-n-переходом заключён в изменении площади сечения канала под воздействием поля, возникающего при подаче напряжения между затвором и истоком.

Пока между затвором и истоком не подано напряжение управления, под воздействием внутреннего поля электронно-дырочных переходов они заперты, сечение канала наиболее велико, его сопротивление низко, и ток стока транзистора максимален. Напряжение затвор-исток, при котором ток стока наиболее велик, называют напряжением насыщения.

Если между затвором и истоком приложить небольшое напряжение, ещё немного закрывающее p-n переходы, то зоны, к которым подсоединён затвор, будут обеднены носителями заряда, размеры этих зон объёмного заряда возрастут, частично перекрывая сечение канала, сопротивление канала возрастёт, и сила тока стока станет меньше. Обеднённые носителями заряда области почти не проводит электрический ток, причём эти области неравномерны по длине пластины полупроводника. Так, у торца пластинки, к которому подключен вывод стока, обеднённые носителями заряда области будут наиболее существенно перекрывать канал, а у противоположного торца, к которому подсоединён вывод истока, снижение площади сечения канала будет наименьшим.

Если приложить ещё большее напряжение между затвором и истоком, то области, обеднённые носителями заряда, станут столь велики, что сечение канала может быть ими полностью перекрыто. При этом сопротивление канала будет наибольшим, а ток стока будет практически отсутствовать. Напряжение затвор-исток, соответствующее такому случаю, именуют напряжением отсечки.

14. Полевой транзистор с изолированным затвором - разновидность полевого транзистора, затвор которого отделён от канала слоем высокоомного диэлектрика. В связи с этим, такие транзисторы называют МДП-транзисторами (металл-диэлектрик-полупроводник) или МОП-транзисторами (металл-окисль-полупроводник).

В этих транзисторах токопроводящий канал формируется непосредственно под слоем диэлектрика, т.е. оказывается локализован в тонком поверхностном слое полупроводника.

В зависимости от того, как образуется проводящий канал, различают МДП-транзисторы двух типов:

 с встроенным (изолированным) каналом,

 с индуцированным (наведенным) каналом.

 

Принцип действия тиристора

Тиристор имеет два силовых контакта, пропускающих рабочий ток (катод и анод) и могут иметь управляющий электрод. Тиристор может находиться в двух состояниях: закрытом и открытом. Эти состояния обладают существенно различным сопротивлением между силовыми электродами. В закрытом состоянии сопротивление велико и ток через тиристор не идёт. Открывается тиристор при достижении между силовыми электродами напряжения открывания или током на управляющем электроде. В открытом состоянии сопротивление тиристора резко падает и он проводит ток. Закрытие тиристора происходит при отключении тока или смене его знака.

 


19) Симиcmop - полупроводниковый прибор, который широко используется в системах, питающихся переменным напряжением. Упрощенно он может рассматриваться как управляемый выключатель. В закрытом состоянии он ведет себя как разомкнутый выключатель. Напротив, подача управляющего тока на управляющий электрод симис-тора ведет к переходу его в проводящее состояние. В это время симистор подобен замкнутому выключателю.

При отсутствии управляющего тока симистор во время любого полупериода переменного напряжения питания неизбежно переходит из состояния проводимости в закрытое состояние.

Кроме работы в релейном режиме в термостате или светочувствительном выключателе, разработаны и широко используются системы регулирования, функционирующие по принципу фазового управления напряжением нагрузки, или, другими словами, плавные регуляторы.

Структура симистора

Симистор можно представить двумя тиристорами, включенными встречно-параллельно. Он пропускает ток в обоих направлениях. Структура этого полупроводникового прибора показана на рис. 8. Симистор имеет три электрода: один управляющий и два основных для пропускания рабочего тока.

Рис.8. Структура симистора

Функционирование симистора

Симистор открывается, если через управляющий электрод проходит отпирающий ток или если напряжение между его электродами А1 и А2 превышает некоторую максимальную величину (на самом деле это часто приводит к несанкционированным срабатываниям симистора, происходящим при максимуме амплитуды напряжения питания).

Симистор переходит в закрытое состояние после изменения полярности между его выводами А1 и А2 или если значение рабочего тока меньше тока удержания Iу.

Отпирание симистора

В режиме переменного питания смена состояний симистора вызывается изменением полярности напряжения на рабочих электродах А1 и А2. Поэтому в зависимости от полярности управляющего тока можно определить четыре варианта управления симистором, как показано на рис. 9.

Каждый квадрант соответствует одному способу открывания симистора. Все способы кратко описаны в табл. 1.

Рис.9. Четыре возможных варианта управления симистором

Таблица 1. Упрощенное представление способов открывания симистора

Квадрант VA2-A1 VG-A1 IGT Обозначение
I >0 >0 Слабый + +
II >0 <0 Средний + -
III <0 <0 Средний - -
IV <0 >0 Высокий - +

20)Способы управления тиристорами;

Возможны три способа управления тиристорами: с помощью сигнала управления; превышением напряжения переключения; быстро нарастающим напряжением du/dt (второй и третий способы применяются в основном для включения диодных тиристоров).

Практически включение тиристоров осуществляется одним из следующих способов:

·увеличение прямого напряжения до U ПЕР;

·увеличением тока управления I У;

·подачей импульса напряжения с крутым фронтом и величиной ниже напряжения переключения на постоянном токе.

 

При таком включении осуществляется бросок емкостного тока через барьерные емкости переходов.

Для перехода тиристора из открытого состояния в закрытое необходимо уменьшить основной ток ниже тока удержания I УД. Это можно осуществить одним из следующих способов:

·разрывом цепи основного ток;

·снижением напряжения до величины, при которой ток станет меньше тока удержания;

·сменой полярности напряжения;

·пропуском кратковременного импульса тока обратного направления, например, от предварительно заряженного конденсатора.

Отдельные типы тиристоров можно выключить подав на управляющий электрод импульс обратной полярности (запираемые тиристоры). В обычных тиристорах этого делать нельзя, т.к. ток управления должен быть равен основному току, а это может привести к пробою эмиттерного перехода.

21)Оптоэлектронные приборы. Классификация;

Оптоэлектронный прибор - это устройство, в котором при обработке информации происходит преобразование электрических сигналов в оптические и обратно. Существенная особенность оптоэлектронных устройств состоит в том, что элементы в них оптически связаны, а электрически изолированы друг от друга. Оптико-электронные приборы очень разнообразны по устройству, принципу действия и применению. Развитие оптико-электронных приборов приводит к появлению новых устройств и возможности новых применений. Существует ряд основных признаков, кото-рые используются для классификации оптико-электронных приборов.

Одним из основных признаков классификации может служить используемая область спектра: ультрафиолетовая (1—380 нм), видимая (380—780 нм) и инфракрасная (780 нм — 1 мм).

Ширина интервала длин волн, где прибор обладает заданной чувствительностью, позволяет подразделить приборы на спектральные и интегральные. Спектральные приборы разлагают исследуемое излучение в спектр, фиксируют положение отдельных его участков и измеряют интенсивность того или иного участка спектра. Действие интегральных приборов основано на использовании неразложенного в спектр излучения.

Способ использования информации определяет, является ли прибор автоматиче­ским, где действия человека по использованию информации либо полностью устранены, либо значительно облегчены и упрощены, или индикационным, где прибор выдает ин­формацию, а решение о действиях при данной информации возлагается на человека.

В зависимости от используемого источника облучения предмета оптико-электронные приборы подразделяют на две основные группы: группу активных, в кото­рых используется искусственный источник излучения, и группу пассивных, восприни­мающих собственное излучение объектов и фонов либо отраженное ими излучение есте­ственных источников (например, Солнца). Такое деление приборов оказалось наиболее подходящим для приборов специального назначения.

Основные признаки классификации не являются единственными. Приборы, напри­мер, могут быть подразделены по характеру выполняемых функций на информационные, измерительные и следящие. Информационные приборы преобразуют с максимальной точностью все детали излучающего объекта и фона в электрический сигнал, по которому восстанавливается видимое изображение или исследуются характеристики излучения. Измерительные приборы предназначаются для измерения только некоторых характери­стик объектов при отображении их в воспринимаемом прибором излучении (размеров, прозрачности, скорости и т. д.). С помощью приборов следящей группы осуществляются автоматическое регулирование технологических процессов и автоматическое сопровож­дение излучающих объектов. Для них характерно наличие исполнительных устройств, с помощью которых производятся действия, соответствующие полученной информации.

Часто существенной оказывается классификация по используемому в приборе яв­лению, сопутствующему распространению лучистого потока в различных средах: прелом­ лению, поглощению, отражению, интерференции, люминесценции, поляризации. В таких случаях приборы называют соответственно интерференционными, люминесцентными, поляризационными и др.

Кроме основной классификации, подразделяющей все оптико-электронные прибо­ры на определенные группы, существуют частные классификации в пределах каждой группы. Разветвленную классификацию имеют, например, спектральные приборы. Очень обширна классификация каждой группы приборов, подразделенных по используемой об­ласти спектра.

Деление приборов по каким-либо основным признакам не исключает того, что оп­ределенная по одному признаку группа приборов может, в свою очередь, подразделяться по другим основным признакам. Спектральные приборы могут быть автоматическими и индикационными, активными и пассивными.

Частные классификации различных групп рассматриваются при изучений прибо­ров.

Требования, предъявляемые к приборам различных групп, могут сильно отличаться в зависимости от назначения и вида приборов. Насколько разнообразны оптико-электронные приборы, настолько и различна формулировка этих требований. При класси­фикации по основным признакам следует учитывать только общие для данной группы требования, соответствующие выполняемым функциям.

 

 

22.

1. Приборы для преобразования света в электрический ток: фото-сопротивления (фоторезисторы), фотодиоды, фототранзисторы, фототиристоры, пироэлектрические приёмники, приборы с зарядовой связью (ПЗС), фотоэлектронные умножители (ФЭУ)

2. Приборы для преобразования тока в световое излучение: различного рода лампы накаливания, электролюминесцентные индикаторы, полупроводниковые светодиоды и лазеры (газовые, твердотельные, полупроводниковые).

3. Приборы для преобразования тока в световое излучение: различного рода лампы накаливания, электролюминесцентные индикаторы, полупроводниковые светодиоды и лазеры (газовые, твердотельные, полупроводниковые).

4. Приборы для применения в различных электронных устройствах: оптоэлектронные интегральные схемы- интегральные микросхемы, в которых осуществляется оптическая связь между отдельными узлами или компонентами с целью изоляции их друг от друга (гальванической развязки).

23. Усилительным транзистором принято называть транзистор с резисторами, конденсаторами и другими деталями, которые обеспечивают ему условия работы как усилителя.

Транзистор в режиме уси­ления. Для иллюстрации ра­боты транзистора в этом ре­жиме проведи следующую серию опытов с тем же транзистором. Первый опыт проиллюстрирован на рис. 29. Это простейший одно-транзисторный усилитель низкой частоты (НЧ). Зажи­мы слева («Вход»), ку­да подводится усиливаемый низкочастотный сигнал, яв­ляются входом, а участок коллекторной цепи транзис­тора, в которую включена нагрузка — телефоны BI — выходом усилителя НЧ.

Между базой транзисто­ра и минусовым проводни­ком батареи GB, питающей усилитель, включи резистор Re, сопротивление которого подбери опытным путем (что на схемах обозначают звездочкой). Через него на базу должно подаваться не­большое, около 0,1...0,15 В, начальное отрицательное на­пряжение, именуемое смещением. Напряжение смеще­ния создает в базовой цепи ток, приоткрывающий тран­зистор. Резистором Rб устанавливают исходный ток кол­лектора IК|соответствующий работе транзистора в ре­жиме усиления. Без смещения транзистор будет иска­жать усиливаемый сигнал.

Конденсатор Сраз на входе усилителя является разде­лительным элементом: не оказывая заметного сопротив­ления колебаниям НЧ, то есть электрическим колебани­ям звукового диапазона, он в то же время должен пре­пятствовать замыканию постоянной составляющей базо­вой цепи транзистора на плюсовой проводник батареи питания через источник усиливаемого сигнала. Роль раз­делительного, или связывающего элемента, может вы­полнять электролитический конденсатор любого типа (ЭМ, К50-3, К50-6) емкостью 5... 10 мкФ на номинальное напряжение 6...10 В.

 

 

24. Задание тока базы с помощью одного резистора. Схема транзисторного каскада с общим эмиттером представлена на рис. 10.5. Режим, в котором работает каскад, можно определить, построив его нагрузочную линию на выходной характеристике транзистора. Данный способ позволяет описать поведение транзистора в режимах насыщения, усиления и отсечки. Режим насыщения определяется следующим условием: ток коллектора не управляется током базы:

 

IKH — ток коллектора насыщения, определяется сопротивлением RK в цепи коллектора и напряжением источника питания ЕК:

 

Этот режим характеризуется низким падением напряжения коллектор-эмиттер (порядка 0.1 В). Для перевода транзистора в этот режим необходимо в базу транзистора подать ток, больший чем ток насыщения базы Iвн:

 

 

Ток насыщения базы задается с помощью резистора Rвн с сопротивлением, равным:

 

где UБЗО - пороговое напряжение перехода база-эмиттер. Для кремниевых транзисторов Uвзо= 0.7 В. В режиме усиления ток коллектора меньше тока 1кн и описывается уравнением нагрузочной прямой:

 

Рабочая точка в статическом режиме задается током базы и напряжением на коллекторе. Она определяется точкой пересечения нагрузочной прямой и выходной характеристики транзистора. Базовый ток транзистора определяется как ток через сопротивление в цепи базы Ев (см.рис. 20.5):

 

Ток коллектора вычисляется по формуле:

 

Напряжение'коллектор-эмиттер определяется из уравнения нагрузочной прямой:

 

В режиме отсечки ток коллектора равен нулю и не создает на резисторе Rк падения напряжения. Следовательно, напряжение Uкэ максимально и равно напряжению источника питания Ек. Ток коллектора с учетом тепловых токов определяется из следующего выражения:

 

где Iкэо, IKBO - обратные токи переходов коллектор-эмиттер и коллектор-база соответственно. Коэффициент нестабильности тока коллектора (S) из-за влияния тепловых токов в схеме определяется как:

 

Как следует из этого выражения, при рассматриваемом способе задания тока базы коэффициент нестабильности зависит от статического коэффициента передачи, который для транзисторов одного и того же типа может сильно различаться. 2. Задание тока базы с помощью делителя напряжения. NPN-транзистор. Схема задания тока базы NPN транзистора с помощью делителя напряжения в каскаде с общим эмиттером представлена на рис. 10.6. Аналогично пункту 1, рассмотрим режимы насыщения, усиления и отсечки. Ток коллектора в режиме насыщения описывается следующим выражением:

 

Независимо от сопротивления резисторов R1 и R2 делителя напряжения ток насыщения базы определяется из выражения:

 

 

а напряжение Uб на базе равно:

 

Это же напряжение задается делителем напряжения. Зная Ек и Uб, можно определить отношение сопротивлений плеч делителя:

 

Суммарное сопротивление делителя обычно выбирается так, чтобы ток, протекающий через него был примерно в 10 раз меньше тока коллектора. Составив систему уравнений и решив её, можно найти сопротивления R1 и R2 плеч делителя, которые обеспечивают ток базы, необходимый для перевода транзистора в режим насыщения. Аналогичным образом каскад рассчитывается и в усилительном режиме, но с учетом следующих выражений. Ток коллектора в усилительном режиме описывается уравнением нагрузочной прямой:

 

где Uэ = IэRэ, Iэ - ток эмиттера.

Ток базы определяется из выражения:

 

Ток коллектора связан с током эмиттера следующим выражением:

 

и Напряжение на базе транзистора равно:

 

Далее рассчитываются сопротивления R1 и R2 делителя напряжения. Суммарное сопротивление делителя должно обеспечивать больший по сравнению с током базы ток делителя (обычно ток делителя берут в 10 раз меньше тока коллектора). Рабочая точка определяется пересечением нагрузочной прямой и выходной характеристики транзистора. При известных значениях сопротивлений R1 и R2 ток базы транзистора равен:

 

где Uб - напряжение на базе транзистора. Если BR э >> R2, то:

 

Ток эмиттера определяется по падению напряжения на сопротивлении Rэ в цепи эмиттера и вычисляется как разность потенциалов

 

Значение напряжения коллектор-эмиттер Uкэ вычисляется по закону Кирхгофа: Uкэ = Eк-IкRк-IэRэ.

Коэффициент нестабильности тока коллектора (S) из-за влияния тепловых токов в схеме при условии, что Uэ > UБЭО определяется как:

 

где

 

Как следует из этого выражения, при данном способе задания тока базы коэффициент нестабильности определяется элементами схемы и практически не зависит от характеристик транзистора, что улучшает стабильность рабочей точки. PNP-транзиcтор. Схема задания тока базы с помощью делителя напряжения в каскаде с общим эмиттером на PNP-транзисторе представлена на рис. 10.7. Для данной схемы справедливы выражения, приведенные в предыдущем пункте для схемы с NPN-транзистором, со следующей поправкой: полярность напряжений и направления токов нужно поменять на обратные.

 

25. В двухтактных усилителях (звуковых или радиочастотных) используются два транзистора, включенных на балансной схе­ме. Выходная мощность двухтактного усилителя более чем в два раза выше выходной мощности, получаемой в однотактной схеме. Кроме того, в двухтактной схеме снижается содержание четных гармоник в сигнале, поэтому для данного напряжения питания усилитель позволяет получать большую неискаженную мощность.

Рис. 1.14. Двухтактная схема с бестрансформаторным выходом.

Как уже обсуждалось в разд. 1ЛО, на входы двухтактного усилителя, собранного на одинаковых транзисторах, необходи­мо подавать сигналы, сдвинутые по фазе на 180°. Поэтому при работе в классе С или В транзисторы попеременно открывают­ся в каждом периоде входного сигнала; полный выходной сиг­нал получается при сложении сигналов каждой половины в вы­ходном трансформаторе. При работе в классе А проводимости транзисторов усилителя в каждом полупериоде входного сигна­ла различны. Поэтому, когда ток первого транзистора увеличи­вается, ток второго транзистора уменьшается. Таким образом, на вторичной обмотке трансформатора выделяется суммарная мощность выходных сигналов двух транзисторов.

Рис 1.15. Бестрансформаторный двухтактный усилитель низкой частоты на транзисторах с проводимостью разного типа.

Два варианта построения схем двухтактных усилителей бы­ли рассмотрены в разд. 1.10 (рис. 1.13). На рис. 1.14 показан еще один тип схемы двухтактного усилителя низкой частоты. Здесь используется входной трансформатор с двумя вторичны­ми обмотками, а выходной трансформатор отсутствует. Как и в других транзисторных усилителях, транзисторы n — р — n-типа, изображенные на рис. 1.14, а можно заменить транзисторами р — n — р-типа, изменив соответствующим образом полярность источников питания. Как можно видеть из рис. 1.14, отрица­тельное напряжение, поступающее от источника питания В2 че­рез катушку громкоговорителя, создает необходимое прямое смещение эмиттерного перехода транзистора Т2. Так как ниж­ний вывод источника питания В2 и коллектор Т2 заземлены, то потенциал коллектора Т2 выше потенциала эмиттера, что необ­ходимо для создания обратного смещения коллекторного пеое-хода. Требуемый положительный потенциал базы транзистора Т2 относительно эмиттера обеспечивается при помощи делителя напряжения на резисторах R1 и R2; делитель связан с источни­ком питания В2 через заземленный коллектор транзистора Т2. Полярность падений напряжений на резисторах указана на ри­сунке; как можно видеть, потенциал базы Т2 положителен от­носительно эмиттера.

Прямое смещение для транзистора Т3 также создается де­лителем напряжения на резисторах Rз и R4, подключенных к батарее В1. Падение напряжения на резисторе R4 обеспечивает положительный потенциал базы транзистора T3 и отрицатель­ный потенциал эмиттера. Отрицательный вывод батареи В1 со­единен непосредственно с эмиттером транзистора T3, а необхо­димое обратное смещение коллекторного перехода этого тран­зистора создается подключением коллектора к положительно­му выводу батареи В1 через катушку громкоговорителя.

Как показано на рисунке, входной трансформатор имеет две вторичные обмотки, что обеспечивает поступление входных на­пряжений на двухтактный усилитель в противофазе, т. е. сиг­нал, приложенный к базе одного транзистора, находится в про­тивофазе с сигналом базы другого транзистора.

Коллекторно-эмиттерные цепи транзисторов Т2 и Tz как бы включены последовательно с источниками питания. Оба тран­зистора соединены с катушкой индуктивности громкоговорите­ля так, что указанные элементы образуют мост, эквивалентная схема которого приведена на рис. 1.14, б. Если транзисторы хо­рошо подобраны, то падения напряжений на них будут равны. А если напряжения источников питания одинаковы и равны их внутренние сопротивления, то мост окажется сбалансирован­ным и постоянный ток через катушку громкоговорителя будет равен нулю. Когда на вторичных обмотках входного трансформатора появится звуковой сигнал, то на базу одного транзисто­ра поступит положительная полуволна, а на базу другого — от­рицательная. В связи с этим проводимость одного транзистора возрастет, а другого уменьшится, через транзисторы потекут разные токи и мост разбалансируется. Разбаланс моста приве­дет к появлению сигнального напряжения на катушке громкого­ворителя, и, следовательно, через нее потечет ток сигнала, а в громкоговорителе появится звук.

Сопротивление катушки громкоговорителя, необходимое для согласования с транзисторным двухтактным усилителем, намно­го меньше сопротивления, требуемого для согласования с двух­тактным усилителем на лампах. Так как транзисторные схемы имеют малое выходное сопротивление, они хорошо согласуются с низкоомными громкоговорителями.

На рис. 1.15 показана схема двухтактного усилителя на двух транзисторах с проводимостью разного типа. В этой схеме тран­зистор ti не является фазоинвертором, поскольку с его выхода на базовые входы транзисторов Т2 и Tz (подаются сигналы од­ной и той же фазы и полярности. Предположим, что на входы транзисторов поступает положительная полуволна сигнала. Положительный входной сигнал увеличивает прямое смещение транзистора Т2 nр — n-типа, а следовательно, и его проводи­мость. Прямое же смещение транзистора 7з и его проводимость при этом уменьшаются, поскольку это транзистор с другим ти­пом проводимости. Таким образом, действие входного сигнала на транзистор Т5 обратно действию на транзистор Т2.

При отрицательном входном сигнале прямое (Смещение тран­зистора Т2 уменьшается, а транзистор а Т3 увеличивается. Теперь проводимость Т2 уменьшилась, а проводимость Т3 увеличилась, т. е. схема, собранная на транзисторах с проводимостью разно­го типа, обеспечивает такие же выходные параметры, как схе­ма двухтактного усилителя на транзисторах одного типа с фа-зоинвертором или трансформатором. Таким образом, в послед­ней схеме также



Поделиться:


Последнее изменение этой страницы: 2021-12-15; просмотров: 41; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.17.184.90 (0.134 с.)