Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Характеристика масляных связующихСодержание книги
Поиск на нашем сайте
Натуральная олифа представляет собой льняное или конопляное масло, обработанное при 250°С без доступа воздуха в присутствии сиккативов. Сиккативы (соли жирных, смоляных и нафтеновых кислот) – вещества, хорошо растворимые в растительных маслах и служащие катализаторами для быстрого их высыхания. Олифа оксоль представляет собой продукт окисления растительных масел (55%) с последующим введением сиккативов и растворением в уайт-спирите (45%). Уайт-спирит – фракция перегонки нефти (особо чистый керосин, возгоняющийся при 140–200оС, имеющий плотность 770 кг/м3). Связующие 4ГУ (п) и 4ГУ (в) – это раствор сплава (50%) полувысыхающих и высыхающих масел (соответственно, индекс “п” или “в”) с канифолью (3%) или нефтеполимерной смолой в уайт-спирите (47%). Указанные связующие вводятся обычно в смесь в количестве 1,5–2%. Связующее ОХМ – это обработанное хлопковое масло плотностью 960–970 кг/м3. В 50–60-е годы был разработан ряд связующих на основе продуктов переработки нефти, сланцев и других веществ, которые почти полностью заменили масла. П – раствор окисленного петролатума (побочный продукт при изготовлении смазочных масел из нефти) в уайт-спирите в соотношении 1:1. Плотность 820–880 кг/м3. ПТ – раствор в уайт-спирите окисленного петролатума и таллового масла (до 30%) – побочного продукта при получении целлюлозы. ПТА – раствор в уайт-спирите окисленного петролатума, обработанного аммиаком, и таллового масла. ГТФ – продукт термической переработки эстонских сланцев (генераторная тяжелая фракция). ПС – связующее из 60% П и 40% ГТФ. СЛК – 50% ГТФ и 50% лака-энтиноля. КО – раствор кубовых остатков (от производства синтетических жирных кислот) в уайт-спирите. УСК – раствор кубовых остатков продуктов переработки нефти (30–35%) в органическом растворителе (40–50%) с адгезионной присадкой (0,1–15%). Для снижения температуры его застывания вводят до 15% асфальтовых смолистых веществ. Все масляные связующие являются жидкостями, хорошо смешиваются с песком, позволяют достичь высокой прочности формовочной смеси после сушки, негигроскопичны, смесь к оснастке не прилипает, имеет хорошую выбиваемость. Недостатками масляных связующих являются необходимость длительной сушки, малая термостойкость, низкая прочность в сыром состоянии. Масляные связующие применяют для изготовления стержней 1-го и 2-го классов сложности. 5.5. Полисахариды Полисахариды – высокомолекулярные сложные углеводы. Они являются побочными продуктами производства переработки сахаросодержащих веществ. Упрочнение форм и стержней с такими связующими происходит при тепловой сушке в результате испарения влаги и полимеризации сахаров. При этом из-за диффузии водного раствора связующего и испарения влаги с поверхности формы поверхностные слои ее обогащаются связующим, в результате чего прочность поверхности повышается, а прочность глубинных слоев понижается. К связующим этого класса (класс Б-2, Б-3) относятся мелясса, пектиновый клей, декстрин, крахмалит, гидрол и др. Мелясса (патока) – продукт переработки сахарной свеклы или тростника. Связующие свойства меляссы зависят от содержания В процессе сушки стержней (при нагреве) мелясса разжижается Прочность смеси, содержащей 2% меляссы и 6% глины, после сушки при 160–180°С составляет не менее 0,3 МПа (3 кг/cм2). Пектиновый клей – отходы переработки жома плодов и овощей, обработанные кислотами. Прочность смеси при содержании 2,5% пек- Декстрин – продукт неполного гидролиза картофельного или кукурузного крахмала (при 120–150°С) разбавленными минеральными кислотами. Крахмал (С6Н10О5) n имеет большую молекулярную массу и не растворим в воде. При нагреве его молекулы расщепляются, и образующийся декстрин становится растворимым. Декстрин поставляется в виде порошка желтого и палевого цвета. Вводится в смесь в количестве 0,5–1,5%. Прочность смеси при содержании 1,25% декстрина после сушки при температуре 160–180°С не менее 0,5 МПа (5,0 кг/см2). Крахмалит – связующее, полученное путем специальной обработки крахмала, вводится в смеси в небольшом количестве (0,015–0,1%) для автоматических линий формовки. Гидрол – продукт переработки кукурузы на глюкозу. Его свойст- Недостатками всех водорастворимых органических связующих являются необходимость тепловой сушки и повышенная гигроскопичность. Поэтому при их длительном хранении снижается прочность стержня. Кроме того, водорастворимые связующие дефицитны. В настоящее время их применение сокращается. 5.6. Лигносульфонаты Лигносульфонаты (ЛСТ) относятся к органическим водным связующим класса Б-2 и Б-3 (см. табл. 5.1).
По объему применения в качестве связующих лигносульфонаты занимают в литейном производстве третье место после глины и жидкого стекла. Они применяются в формовочных смесях для формовки по-сырому, по-сухому, для изготовления стержней в нагретой оснастке, в жидкоподвижных и сыпучих ХТС, противопригарных красках, в качестве катализатора для отверждения ХТС и др. Лигносульфонаты являются побочными продуктами при производстве целлюлозы из древесины сульфитным способом. ЛТС являются очень дешевыми и недефицитными органическими связующими, обеспечивающими хорошую выбиваемость форм и стержней. В настоящее время используется менее половины получаемых лигносульфонатов, а большая часть их из-за ограниченного применения выбрасывается в канализацию или сжигается. Масштабы применения ЛТС могут быть значительно расширены. Применение ЛТС в литейном производстве – пример безотходной технологии в промышленности. Согласно ГОСТ 13 183–83 производятся ЛСТ марки А (жидкие, содержат сухих веществ не менее 47%, плотность – не менее 1230 кг/м3) и марки Т (твердые, более 76% сухих веществ); pH 20%-го раствора ЛСТ – не менее 4,4. Твердые ЛСТ, хотя и более удобны для транспортирования, особенно в холодное время года (поставляются в виде глыб по 20 кг в бумажных мешках), однако из-за трудностей, возникающих при хранении (слипание), дозировке и растворении, применяются ограниченно. Для формовки по-сырому и по-сухому и для изготовления стержней в нагретой оснастке наиболее подходящими являются ЛСТ с натриевым основанием, а для ЖСС, отверждаемых CrO3, – ЛСТ с кальциевым основанием. ЛСТ применяются в формовочных смесях в сочетании с глиной Для уменьшения напряжений в пленках в ЛСТ следует вводить пластификаторы (мочевину, глицерин) или инертные добавки (глину, маршалит), уменьшающие усадку и напряжение при высыхании. Прочность при растяжении формовочных смесей, содержащих 3% глины и 5% ЛСТ, после сушки при 160–180°С составляет не менее 0,6 МПа, а при добавке еще 5% маршалита – 0,6–0,8 МПа. Такой прочности часто недостаточно, особенно для стержней, поэтому ЛСТ комбинируют с другими связующими, например, при изготовлении стержней в нагретой оснастке применяют ЛСТ в сочетании с фенолоспиртом, карбамидной смолой и другими веществами. Недостатком ЛСТ является невысокая термостойкость (»380°С), что ограничивает область их применения (используются при мелком и среднем литье). Кроме того, ЛСТ, как и все водорастворимые связующие, имеют повышенную гигроскопичность, что приводит к снижению прочности стержня (формы) при хранении. Однако при вводе гидрофобных добавок (бентон, парафин, жиры) в ЛСТ гигроскопичность их уменьшается. На основе ЛСТ и гидрофобных продуктов переработки нефти и сланцев (петролатума, битума) созданы комбинированные (эмульсионные) связующие, которые позволяют достичь более высокой прочности, чем каждое из них в отдельности. Кроме того, эти связующие негигроскопичны. Наиболее распространены следующие эмульсионные связующие: СП – состоит из 95% ЛСТ и 5% окисленного петролатума; СБ – содержит 80–85% ЛСТ и 15–20% ГТФ. Прочность при растяжении формовочных смесей с 4–5% этих связующих после сушки при 220–240°С составляет 0,5–0,6 МПа (5,0– 5.7. Синтетические смолы Синтетические смолы относятся к органическим неводным (А-1) и водным (Б-1) связующим. В последнее время в литейном производстве в качестве связующих распространение получают синтетические смолы. Поскольку синтетические смолы являются дорогостоящими, их применяют более экономно, чем другие связующие Рассмотрим синтетические смолы, применяемые для изготовления стержней в холодной оснастке. ХТС с синтетическими смолами начали применять с 1958 года. Вместо традиционной технологии изготовления стержней, при которой стержни после уплотнения подвергались тепловой сушке, использование ХТС позволило коренным образом изменить технологию изготовления стержней и форм. Сущность технологии заключается в следующем: в смесь вводится жидкая смола (в полимерном состоянии) и отвердитель (кислота), при химическом взаимодействии которых происходит поликонденсация смолы до полного ее затвердевания и, как результат, упрочнения стержня (формы). Применяются также способы упрочнения стержней из ХТС со смолой путем добавки в смесь изоцианатов (отвердителей) и с продувкой ее катализатором (аминами, SO2). ХТС со смолами имеют бόльшие преимущества, чем смеси с другими связующими: высокая прочность при малом (1–2%) расходе связующего, повышенная точность размеров стержней (и, соответственно, отливок); отпадает необходимость в тепловой сушке, не требуется применение сушильных плит, возможно использование оснастки из любых материалов (металлов, древесины, пластмасс), конструкция стержневых ящиков проще, чем нагреваемых, и т. д. Смеси со смолами имеют высокую текучесть и за счет этого легко уплотняются даже кратковременной вибрацией. Стержни негигроскопичны, из-за высокой прочности уменьшается или полностью отпадает необходимость в применении каркасов, имеют хорошую податливаемость и выбиваемость. Применение ХТС позволяет механизировать и автоматизировать изготовление стержней, повышает производительность труда и чистоту поверхности отливок, снижает брак и себестоимость отливок. Известно, что смолы – это олигомеры, застабилизированные на какой-то промежуточной стадии полимеризации или поликонденсации (в зависимости от способа получения). Полимеризационные смолы получают в результате полимеризации одного или нескольких исходных веществ – манометров – по схеме nA ® An. В литейном производстве применяют в основном конденсационные смолы. Их получают в результате поликонденсации не менее чем двух веществ n (aAa) + n (bBb) «a (AB) n b + (2 n – 1) ab, где a и b – функциональные группы исходных веществ A и B; n – число молекул исходных веществ; a (АВ) n b – смола, образовавшаяся в результате поликонденсации; 2 n – 1 – число молекул выделившихся побочных продуктов ab. Считают, что при получении (синтезе) смол поликонденсация молекул протекает по стадиям: Ф (жидкая смола), В (желатинообразная) и С (твердая). Все смолы, применяемые в качестве связующих, – это полимеры (или, точнее, олигомеры) промежуточной стадии, между А и В, т. е. процесс их поликонденсации прерван при получении смолы. Процесс поликонденсации смолы возобновляют в ХТС путем ввода в нее отвердителя (катализатора). В табл. 5.3 приведены наиболее широко применяемые смолы для ХТС. Таблица 5.3 Синтетические смолы для ХТС
Самыми дешевыми являются мочевино-формальдегидные смолы. Они являются продуктами конденсации мочевины (карбамида) CO(NH2)2 с формальдегидом CH2O, производятся различных марок, отличающихся одна от другой содержанием сухого вещества, степенью конденсации, вязкостью, содержанием свободного формальдегида и др. Недостатком карбамидных смол является низкая термостойкость (220–480°С), вследствие чего стержни и формы имеют большую газотворность, а при разложении они выделяют азот, что может стать причиной газовой пористости в отливках. Эти смолы применяются в основном для получения отливок из цветных металлов и тонкостенного чугунного литья. Содержание азота в смеси для получения чугунных и стальных отливок не должно превышать 0,2%, а для получения отливок из высоколегированных чугунов и сталей – 0,01%. Поэтому для стального литья можно применять мочевино-формальдегидно-фурановые смолы, содержащие не более 1,5% азота. Кроме того, смеси с мочевино-формальдегидными смолами имеют повышенную гигроскопичность. С целью повышения термостойкости мочевино-формальдегидных смол при их синтезе вводят фуриловый спирт С5H6O2. Такие смолы называют карбамидо-фурановыми. Чем больше введено в смолу фурилового спирта, тем выше их термостойкость. Установлено, что для чугунного литья необходимо содержание в смоле не менее 30%, а для стального – не менее 60% фурилового спирта. Из фуриловых смол наибольшее распространение получили мочевино-формальдегидные смолы, содержащие 40–90% фурилового спирта. Термин “фурановая смола” относится к фенолоформальдегидным смолам, модифицированным фуриловым спиртом. Повышенную термостойкость (400–800°С) имеют и фенолоформальдегидные смолы, являющиеся продуктами поликонденсации фенола С6Н5ОН и формальдегида в присутствии различных катализаторов и добавок. Поэтому эти смолы пригодны для стального и чугунного литья. Высокую термостойкость имеют также фурило-фенолоформальдегидные смолы – продукты поликонденсации фурилового спирта с фенолоспиртами, стабилизированные фуриловым спиртом (ФФ-1Ф, ФФ-1ФМ) или гидролизным этиловым спиртом (ФФ-1СМ). Эти смолы применяют для ответственного стального литья. Фурило-фенолоформальдегидные смолы – самые дорогостоящие. Весьма перспективны водорастворимые фенолоформальдегидные смолы СФЖ-30-13 и водоэмульсионная смола СФЖ-301, позволяющие вводить в смесь до 3% глины или применять глинистые пески. Глина при этом адсорбирует низкомолекулярные фракции связующего, в результате чего повышается прочность XТC. Применяются и другие виды смол для ХТС: алкидные, эпоксидные, полиэфирные. Алкидные, или глифталевые, смолы получают при поликонденсации глицерина и фталевого ангидрида. Их отверждают полиизоцианатом и амином. При этом образуются полиуретаны, имеющие высокую прочность. Известны также алкидные смолы, модифицированные растительным маслом. Полиэфирные смолы имеют в молекулах несколько групп ОН. В качестве отвердителя этих смол в ХТС вводятся изоцианаты. Смолы отверждают также продувкой аминами. Через 5 мин прочность достигает 0,2 МПа при содержании 0,7% смолы. В результате исследований было показано, что при содержании 0,7% смолы “Систол” Известны ХТС с поливиниловым спиртом (ГОСТ 10779–78), который вводится в смесь в виде 7,5–10%-го водного раствора в количестве 4–5% (по отношению к песку). Отверждение происходит при добавке 0,06–0,18% дикарбоновых кислот, например, лимонной. При этом достигается прочность 1,9–2 МПа. Однако ХТС с поливиниловым спиртом (ПВС) имеют повышенную гигроскопичность, и для ее снижения необходимо в смесь добавлять 0,1–0,5% (от сухого ПВС) силана. Смолы холодного отверждения при хранении самопроизвольно полимеризуются. Чем выше степень их полимеризации сверх оптимальной, тем ниже прочность ХТС с такими смолами. Поэтому срок хранения смол ограничивается (2–6 мес.). Кроме того, для минимального расхода смолы необходимо применять песок высокого качества с минимальным содержанием глины и других примесей, которые поглощают часть смолы и снижают адгезию связующего к песчинкам. В последние годы применяется способ отверждения ХТС со смолами продувкой сухим холодным или горячим воздухом. Все смолы, применяемые для ХТС, пригодны для изготовления стержней в нагретой оснастке. Для изготовления стержней в нагретой оснастке применяются и другие смолы (табл. 5.4). Таблица 5.4
|
||||||||||||||||||||||
|
Последнее изменение этой страницы: 2021-11-27; просмотров: 115; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.214 (0.012 с.) |