Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Поверхностное упрочнение сталиСодержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
Поверхностная закалка состоит в нагреве поверхностного слоя стальных деталей до аустенитного состояния и быстрого охлаждения с целью получения высокой твердости и прочности в поверхностном слое в сочетании с вязкой сердцевиной. Существуют различные способы нагрева поверхности под закалку — в расплавленных металлах или солях, пламенем газовой горелки, лазерным излучением, током высокой частоты. Последний способ получил наибольшее распространение в промышленности. При нагреве токами высокой частоты закаливаемую деталь помещают внутри индуктора, представляющего собой медные трубки с Пейсахов A.M. МАТЕРИАЛОВЕДЕНИЕ циркулирующей внутри для охлаждения водой. Форма индуктора соответствует внешней форме детали. Через индуктор пропускают электрический ток (частотой 500 Гц-10 МГц). При этом возникает электромагнитное поле, которое индуцирует вихревые токи, нагревающие поверхность детали. Глубина нагретого слоя уменьшается с увеличением частоты тока и увеличивается с возрастанием продолжительности нагрева. Регулируя частоту и продолжительность, можно получить необходимую глубину закаленного слоя, находящуюся в пределах 1-10 мм. Преимуществами закалки токами высокой частоты являются регулируемая глубина закаленного слоя, высокая производительность (нагрев одной детали длится 10 с), возможность автоматизации, отсутствие окалинообразования. Недостаток — высокая стоимость индуктора, который является индивидуальным для каждой детали. Поэтому этот вид закалки применим, в основном, к крупносерийному и массовому производству. Перспективный метод поверхностной закалки стальных деталей сложной формы — лазерная обработка. Благодаря высокой плотности энергии в луче лазера возможен быстрый нагрев очень тонкого слоя металла. Последующий быстрый отвод тепла в объем металла приводит к закалке поверхностного слоя с приданием ему высокой твердости и износостойкости. Химико-термическая обработка — это процесс изменения химического состава, структуры и свойств поверхности стальных деталей за счет насыщения ее различными химическими элементами. При этом достигается значительное повышение твердости и износостойкости поверхности деталей при сохранении вязкой сердцевины. К видам химико-термической обработки относятся цементация, азотирование, цианирование и др. Цементация — это процесс насыщения поверхностного слоя стальных деталей углеродом. Цементация производится путем нагрева стальных деталей при 880-950°С в углеродосодержащей среде, называемой карбюризатором. Различают два основных вида цементации — газовую и твердую. Газовая цементация проводится в газе, содержащем метан СН4 и оксид углерода СО. Твердая цементация проводится в стальных ящиках, куда укладываются детали вперемешку с карбюризатором. Карбюризатором служит порошок древесного угля с добавкой солей Na2CO3 или ВаСО3. Цементации подвергают стали с низким содержанием углерода (0,1-0,3%). В результате на поверхности концентрация углерода 4. ТЕРМИЧЕСКАЯ И ХИМИКО-ТЕРМИЧЕСКАЯ ОБРАБОТКА СТАЛИ 39 возрастает до 1,0-1,2%. Толщина цементованного слоя составляет 1-2,5 мм. Цементацией достигается только выгодное распределение углерода по сечению детали. Высокая твердость и износостойкость поверхности получается после закалки, которая обязательно проводится после цементации. Затем следует низкий отпуск. После этого твердость поверхности составляет HRC 60. Азотированием называется процесс насыщения поверхности стали азотом. При этом повышаются не только твердость и износостойкость, но и коррозионная стойкость. Проводится азотирование при температуре 500-600°С в среде аммиака NH3 в течение длительного времени (до 60 ч.) Аммиак при высокой температуре разлагается с образованием активного атомарного азота, который и взаимодействует с металлом. Твердость стали повышается за счет образования нитридов легирующих элементов. Поэтому азотированию подвергают только легированные стали. Наиболее сильно повышают твердость такие легирующие элементы, как хром, молибден, алюминий, ванадий. Глубина азотированного слоя составляет 0,3 — 0,6 мм, твердость поверхностного слоя по Виккерсу доходит до HV 1200 (при цементации HV 900). К преимуществам азотирования перед цементацией следует отнести отсутствие необходимости в дополнительной термообработке, более высокую твердость и износостойкость, высокую коррозионную стойкость поверхности. Недостатками являются низкая скорость процесса и необходимость применения дорогих легированных сталей. Цианирование (нитроцементация) — это процесс одновременного насыщения поверхности стали углеродом и азотом. Проводится цианирование в расплавах цианистых солей NaCN или KCN или в газовой среде, содержащей смесь метана СН4 и аммиака NHr Различают низкотемпературное и высокотемпературное цианирование. Низкотемпературное цианирование проводится при температуре 500-600°С. При этом преобладает насыщение азотом. Глубина цианирован-ного слоя составляет 0,2-0,5 мм, твердость поверхности — HV 1000. При высокотемпературном цианировании температура составляет 800-950°С. Преобладает насыщение углеродом. Глубина поверхностного слоя составляет 0,6 — 2,0 мм. После высокотемпературного цианирования следует закалка с низким отпуском. Твердость после термообработки составляет HRC 60. Поверхностное упрочнение пластическим деформированием основано на способности стали к наклепу при пластической деформации Пейсахов A.M. МАТЕРИАЛОВЕДЕНИЕ 5. ЛЕГИРОВАННЫЕ СТАЛИ
(см. раздел 2.1). Наиболее распространенными способами такого упрочнения поверхности является дробеструйная обработка и обработка поверхности роликами или шариками. При дробеструйной обработке на поверхность детали из специальных дробеметов направляется поток стальной или чугунной дроби малого диаметра (0,5-1,5 мм). Удары концентрируются на весьма малых поверхностях, поэтому возникают очень большие местные давления. В результате повышается твердость и износостойкость обработанной поверхности. Кроме того, сглаживаются мелкие поверхностные дефекты. Глубина упрочненного слоя при дробеструйной обработке составляет около 0,7 мм. Обкатка роликами производится с помощью специальных приспособлений на токарных станках. Помимо упрочнения, обкатка снижает шероховатость обрабатываемой поверхности. Глубина упрочненного слоя доходит до 15 мм. ЛЕГИРОВАННЫЕ СТАЛИ Легированной называют сталь, содержащую специально введенные в нее с целью изменения строения и свойств легирующие элементы. Легированные стали имеют целый ряд преимуществ перед углеродистыми. Они имеют более высокие механические свойства, прежде всего, прочность. Легированные стали обеспечивают большую прока-ливаемость, а также возможность получения структуры мартенсита при закалке в масле, что уменьшает опасность появления трещин и коробления деталей. С помощью легирования можно придать стали различные специальные свойства (коррозионную стойкость, жаростойкость, жаропрочность, износостойкость, магнитные и электрические свойства). Классификация сталей по различным признакам была рассмотрена ранее (см. раздел 3.2). Отметим только, что стали обыкновенного качества могут быть только углеродистыми, т.е. легированные стали, как минимум, являются качественными. Маркируются легированные стали с помощью цифр и букв, указывающих примерный химический состав стали. Первые цифры в марке показывают среднее содержание углерода в сотых долях процента. Далее показывается содержание легирующих элементов. Каждый элемент обозначается своей буквой: Н — никель, Г — марганец, Ц — цирконий, Т — титан, X — хром, Д — медь, С — кремний, А — азот, К — кобальт, Р — бор, П — фосфор, Ф — ванадий, М — молибден, Б — ниобий, В — вольфрам, Ю — алюминий. Цифры, идущие после буквы, указывают примерное содержание данного легирующего элемента в процентах. При содержании элемента менее 1% цифра отсутствует. Например, сталь 12Х18Н10Т содержит приблизительно 0,12% углерода, 18% хрома, 10% никеля, менее 1% титана. Для некоторых групп сталей применяют другую маркировку, которая будет указана при рассмотрении этих сталей. Конструкционные стали Конструкционные стали идут на изготовление деталей машин, конструкций и сооружений. Они должны обеспечивать длительную и надежную работу деталей и конструкций в условиях эксплуатации. Пейсахов A.M. МАТЕРИАЛОВЕДЕНИЕ 5. ЛЕГИРОВАННЫЕ СТАЛИ
Поэтому основное требование к конструкционным сталям — комплекс высоких механических свойств. Строительные стали содержат малые количества углерода (0,1-0,3%)- Это объясняется тем, что детали строительных конструкций обычно соединяются сваркой. Низкое содержание углерода обеспечивает хорошую свариваемость. В качестве строительных используются углеродистые стали Ст2 и СтЗ, имеющие предел текучести б 0,= 240 МПа. В низколегированных строительных сталях при содержании около 1,5% Мп и 0,7% Si предел текучести увеличивается до 360 МПа. К этим сталям относятся 14Г2, 17ГС, 14ХГС. Дополнительное легирование небольшими количествами ванадия и ниобия (до 0,1%) повышает предел текучести до 450 МПа за счет уменьшения величины зерна. К сталям такого типа относятся 14Г2АФ, 17Г2АФБ. Приведенные стали применяют для строительных конструкций, армирования железобетона, магистральных нефтепроводов и газопроводов. Цементуемые стали содержат 0,1-0,3% углерода. Они подвергаются цементации, закалке и низкому отпуску. После этой обработки твердость поверхности составляет HRC 60, а сердцевины HRC 15 — 40. Упрочнение сердцевины в этих сталях тем сильнее, чем больше содержание легирующих элементов. В зависимости от степени упрочнения сердцевины цементуемые стали можно разделить на три группы. К сталям с неупрочняемой сердцевиной относятся углеродистые цементуемые стали 10, 15, 20. Их сердцевина имеет феррито-пер-литную структуру. Эти стати имеют высокую износостойкость, но малую прочность (бв = 400-500 МПа). Поэтому они применяются для малоответственных деталей небольших размеров. К сталям со слабо упрочняемой сердцевиной относятся низколегированные стали 15Х, 15ХР, 20ХН и др. Сердцевина имеет структуру бейнит. Эти стали имеют повышенную прочность (бв= 750-850 МПа). К сталям с сильно упрочняемой сердцевиной относятся стали 20ХГР, 18ХГТ, 30ХГТ, 12ХНЗ, 18Х2Н4В и др. Серцевина имеет мартенситную структуру. Стали этой группы имеют высокую прочность (б„ = 1200-1600 МПа) и применяются для крупных деталей, испытывающих значительные нагрузки. Улучшаемые стали содержат 0,3-0,5% углерода и небольшое количество легирующих элементов (до 3-5%). Эти стали подвергаются улучшению, состоящему из закалки в масле и высокого отпуска. После термообработки имеют структуру сорбита. Механические свойства разных марок улучшаемой стали в случае сквозной прокалива-емости близки (бя= 900-1200 МПа). Поэтому прокаливаемость определяет выбор стали. Чем больше легирующих элементов, тем выше прокаливаемость. Следовательно, чем больше сечение детали, тем более легированную сталь следует использовать. По прокаливаемос -ти улучшаемые стали могут быть условно разбиты на пять групп. В первую группу входят углеродистые стали 35, 40, 45, имеющие критический диаметр Dk = 10 мм (см. раздел 4.2.). Эти стали подвергаются нормализации вместо улучшения. Ко второй группе относятся стали, легированные хромом 30Х, 40Х. Для них критический диаметр составляет Dk = 15-20 мм. Третью группу составляют хромистые стали, дополнительно легированные еще одним двумя элементами (кроме никеля) 30ХМ, 40ХГ, 30ХГС и др. Для этих сталей Dk = 20-30 мм. Четвертая группа представлена хромоникелевыми сталями, содержащими около 1% никеля: 40ХН, 40ХНМ и др. Их критический диаметр D = 40 мм. В пятую группу входят стали, легированные рядом элементов, причем содержание никеля доходит до 3-4%: 38ХНЗ, 38ХНЗМФ (Dk = 100 мм). Это лучшие марки улучшаемых сталей, хотя они сравнительно дороги. Высокопрочные стали. Новейшая техника предъявляет высокие требования к прочности стали (бв= 1500-2500 МПа). Этим требованиям соответствуют мартенситностареющие стали сочетающие высокую прочность с достаточной вязкостью и пластичностью. Они представляют собой практически безуглеродистые (до 0,03% С) сплавы железа с никелем (17-26% Ni), дополнительно легированные титаном, алюминием, молибденом, ниобием и кобальтом. Широкое распространение получила сталь Н18К9М5Т. Она подвергается закалке на воздухе с 800-850°С. Высокую прочность мартенситностареющие стали получают в результате старения, представляющего собой отпуск, производимый при температуре 450-500°С. В результате такой термообработки сталь Н18К9М5Т имеет предел прочности б= 2000 МПа. Кроме упомянутой выше стали нашли применение стали Н12К8МЗГ2, Ml0X11М2Т, Н12К8М4Г2 и другие. Мартенситностареющие стали применяют в авиационной промышленности, в ракетной технике, судостроении и т. д. Они обладают хорошей свариваемостью и обрабатываемостью. Эти стали являются достаточно дорогостоящими. Пейсахов A.M. МАТЕРИАЛОВЕДЕНИЕ 5. ЛЕГИРОВАННЫЕ СТАЛИ
Пружинные стали. В пружинах и рессорах используются только упругие свойства стали. Возникновение пластической деформации в них недопустимо, поэтому высоких требований к пластичности и вязкости не предъявляется. Основное требование к пружинной стали — высокий предел упругости о (см. раздел 1.2). Хорошие упругие свойства стали достигаются при повышенном содержании углерода (0,5-0,7%) и применении термообработки, состоящей из закалки и среднего отпуска при температуре 35О-450°С. После такой термообработки сталь имеет троститную структуру. Углеродистые пружинные стали (65, 70, 75) вследствие низкой прокаливаемое™ используются для пружин небольшого сечения. Они могут работать при температуре до 100° С. Стали, легированные кремнием и марганцем (60С2, 60СГ и др.) предназначены для больших по размеру упругих элементов и обеспечивают их длительную и надежную работу. Для ответственных пружин применяют высококачественные стали легированные хромом и ванадием (50ХФА, 50ХГФА). Эти стали могут работать при температуре до 300е С. Из них изготавливают, например, рессоры легковых автомобилей. Износостойкие стати способны сопротивляться процессу изнашивания. Изнашивание — это процесс постепенного разрушения поверхностных слоев трущихся деталей, который приводит к уменьшению их размеров (износу). Износостойкие стали можно разделить на три группы. В первую группу входят стали, износостойкость которых достигается высокой твердостью поверхности. Они подвергаются закалке и низкому отпуску или химико-термической обработке. Имеют структуру мартенсита или мартенсита с карбидными включениями. К этой группе относятся подшипниковые стали, из которых изготавливаются шарики и ролики подшипников качения. Они маркируются буквами ШХ и цифрой показывающей содержание хрома в десятых долях процента, содержат также марганец и кремний (ШХ4, ШХ15, ШХ15СГ, ШХ20СГ). Содержание углерода в них около 1%. Ко второй группе относятся стали, износостойкость которых достигается смазывающим действием графита. Эти стали имеют в структуре графитные включения, которые в процессе изнашивания выходят на поверхность и выполняют роль сухой смазки. Эти стали имеют высокое содержание углерода (-1,5%) и кремния (-1%), что повышает способность к графитизации. Эти стали подвергаются гра-фитизирующему отжигу, который аналогичен отжигу ковкого чу1уна (см. раздел 3.3.). Третью группу составляют стали износостойкость которых достигается повышенной склонностью к наклепу. Это, прежде всего, сталь 110Г13. Она имеет невысокую твердость, которая при действии давления и ударов резко повышается, за счет чего и достигается износостойкость. Эта сталь подвергается закалке от 1100°С в воде, после чего получает аустенитную структуру. Плохо обрабатывается резанием, поэтому применяется в литом состоянии.
|
|||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 1422; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.218.219 (0.012 с.) |