Практическая работа №9. Многогранники. Тела и поверхности вращения. Измерения в геометрии 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Практическая работа №9. Многогранники. Тела и поверхности вращения. Измерения в геометрии



Многогранник — это такое тело, поверхность которого состоит из конечного числа плоских многоугольников (рис. 4). Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого плоского многоугольника на его поверхности. Общая часть такой плоскости и поверхности выпуклого многогранника называется гранью. Грани выпуклого многогранника являются плоскими выпуклыми многоугольниками. Стороны граней называются ребрами многогранника, а вершины — вершинами многогранника.

Поясним сказанное на примере знакомого вам куба (рис. 5). Куб есть выпуклый многогранник. Его поверхность состоит из шести квадратов: ABCD, BEFC,.... Они являются его гранями. Ребрами куба являются стороны этих квадратов: АВ, ВС, BE,.... Вершинами куба являются вершины квадратов: А, В, С, D, Е,.... У куба шесть граней, двенадцать ребер и восемь вершин.

Простейшим многогранникам — призмам и пирамидам, которые будут основным объектом нашего изучения,— мы дадим такие определения, которые, по существу, не используют понятие тела. Они будут определены как геометрические фигуры с указанием всех принадлежащих им точек пространства. Понятие геометрического тела и его поверхности в общем случае будет дано позже.

Призмой называется многогранник, который состоит из двух плоских многоугольников, лежащих в разных плоскостях и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих многоугольников (рис. 6). Многоугольники называются основаниями призмы, а отрезки, соединяющие соответствующие вершины,— боковыми ребрами призмы.

Так как параллельный перенос есть движение, то основания призмы равны.

Так как при параллельном переносе плоскость переходит в параллельную плоскость (или в себя), то у призмы основания лежат в параллельных плоскостях.

Так как при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то у призмы боковые ребра параллельны и равны.

Поверхность призмы состоит из оснований и боковой поверхности. Боковая поверхность состоит из параллелограммов. У каждого из этих параллелограммов две стороны являются соответствующими сторонами оснований, а две другие — соседними боковыми ребрами.

Высотой призмы называется расстояние между плоскостями её оснований. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани, называется диагональю призмы.

Призма называется n-угольной, если ее основания — n-угольники.

В дальнейшем мы будем рассматривать только призмы, у которых основания — выпуклые многоугольники. Такие призмы являются выпуклыми многогранниками.

На рисунке 6 изображена пятиугольная призма. У нее основаниями являются пятиугольники А1 А2...А5, А1 ’ А'2...А'5. XX' — отрезок, соединяющий соответствующие точки оснований. Боковые ребра призмы—отрезки А1 А'2, А1 А'2,..., А5 А'5. Боковые грани призмы — параллелограммы А1 А2 А'2 А1, А2 А3 А’ 3 А'2,....

Изображение призмы и построение ее сечений

В соответствии с правилами параллельного проектирования изображение призмы строится следующим образом. Сначала строится одно из оснований Р (рис. 7). Это будет некоторый плоский многоугольник. Затем из вершин многоугольника Р проводятся боковые ребра призмы в виде параллельных отрезков равной длины. Концы этих отрезков соединяются, и получается другое основание призмы. Невидимые ребра проводятся штриховыми линиями.

Сечения призмы плоскостями, параллельными боковым ребрам, являются параллелограммами. В частности, параллелограммами являются диагональные сечения. Это сечения плоскостями, проходящими через два боковых ребра, не принадлежащих одной грани (рис. 8).

На практике, в частности, при решении задач часто приходится строить сечение призмы плоскостью, проходящей через заданную прямую g на плоскости одного из оснований призмы. Такая прямая называется следом секущей плоскости на плоскости основания. Для построения сечения призмы достаточно построить отрезки пересечения секущей плоскости с гранями призмы. Покажем, как строится такое сечение, если известна какая-нибудь точка А на поверхности призмы, принадлежащая сечению (рис. 9).

Если данная точка А принадлежит другому основанию призмы, то его пересечение с секущей плоскостью представляет собой отрезок ВС, параллельный следу g и содержащий данную точку А (рис. 9, а).

Если данная точка А принадлежит боковой грани, то пересечение этой грани с секущей плоскостью строится, как показано на рисунке 9,б. Именно: сначала строится точка D, в которой плоскость грани пересекает заданный след g. Затем проводится прямая через точки А и D. Отрезок ВС прямой AD на рассматриваемой грани и есть пересечение этой грани с секущей плоскостью. Если грань, содержащая точку А, параллельна следу g, то секущая плоскость пересекает эту грань по отрезку ВС, проходящему через точку А и параллельному прямой g.

Концы отрезка ВС принадлежат и соседним граням. Поэтому описанным способом можно построить пересечение этих граней с нашей секущей плоскостью. И т. д.

На рисунке 10 показано построение сечения четырехугольной призмы плоскостью, проходящей через прямую а в плоскости нижнего основания призмы и точку А на одном из боковых ребер.

Прямая призма

Призма называется прямой, если ее боковые ребра перпендикулярны основаниям. В противном случае призма называется наклонной.

У прямой призмы боковые грани являются прямоугольниками. При изображении прямой призмы на рисунке боковые ребра обычно проводят вертикально (рис. 11).

Прямая призма называется правильной, если ее основания являются правильными многоугольниками.

Боковой поверхностью призмы (точнее, площадью боковой поверхности) называется сумма площадей боковых граней. Полная поверхность призмы равна сумме боковой поверхности и площадей оснований.

Также одной из основных задач обучения математики является развитие у учащихся абстрактного мышления. Этой цели в значительной мере способствует применение наглядных пособий, причем не только в младших классах, но и в старших. Широкие возможности для реализации этой цели предоставляет тема «Многогранники», в частности, самостоятельное изготовление учениками наглядных пособий. В процессе изготовления моделей многогранников, кроме теоретических знаний и навыков, ученики закрепляют сформировавшиеся новые понятия при помощи чертежа и фактического решения задач на построение. При самостоятельном изготовлении моделей образ создается по частям, в силу этого с ними можно производить различные манипуляции.

Двугранный угол

Двугранным углом называется фигура, образованная двумя "полуплоскостями с общей ограничивающей их прямой Полуплоскости называются гранями, а ограничивающая их прямая — ребром двугранного угла.

Плоскость, перпендикулярная ребру двугранного угла, пересекает его грани по двум полупрямым. Угол, образованный этими полупрямыми, называется линейным. углом двугранного угла.

За меру двугранного угла принимается мера соответствующего ему линейного угла. Все линейные углы двугранного угла совмещаются параллельным переносом, а значит, равны. Поэтому мера двугранного угла не зависит от выбора линейного угла.

Трехгранный и многогранный углы

Рассмотрим три луча а,b, с, исходящие из одной точки и не лежащие в одной плоскости. Трехгранным углом (abc) называется фигура, составленная "из трех плоских углов (аb), (bс) и (ас). Эти углы называются гранями трехгранного угла, а их стороны — ребрами, общая вершина плоских углов называется вершинойтрехгранного угла. Двугранные углы, образованные гранями трехгранного угла, называются двугранными углами трехгранного угла.

Многогранник

Стереометрии изучаются фигуры в пространстве, называемые телами. Наглядно (геометрическое) тело надо представлять себе как часть пространства, занятую физическим телом и ограниченную поверхностью.

Многогранник — это такое тело, поверхность которого состоит из конечного числа плоских многоугольников. Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого плоского многоугольника на его поверхности. Общая часть такой плоскости и поверхности выпуклого многогранника называется гранью. Грани выпуклого многогранника являются плоскими выпуклыми многоугольниками. Стороны граней называются ребрами многогранника, а вершины — вершинами многогранника.

Поясним сказанное на примере знакомого вам куба Куб есть выпуклый многогранник. Его поверхность состоит из шести квадратов: ABCD, BEFC,.... Они являются его гранями. Ребрами куба являются стороны этих квадратов: АВ, ВС, BE,.... Вершинами куба являются вершины квадратов: А, В, С, D, Е,.... У куба шесть граней, двенадцать ребер и восемь вершин.

Простейшим многогранникам — призмам и пирамидам, которые будут основным объектом нашего изучения,— мы дадим такие определения, которые, по существу, не используют понятие тела. Они будут определены как геометрические фигуры с указанием всех принадлежащих им точек пространства. Понятие геометрического тела и его поверхности в общем случае будет дано позже.

Тела и поверхности вращения

Цилиндр

Цилиндром называется тело, которое состоит из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов. Круги называются основаниями цилиндра, а отрезки, соединяющими цилиндра. Так как параллельный перенос есть движение, то основания цилиндра равны. Так как при параллельном переносе плоскость переходит в параллельную плоскость (или в себя), то у цилиндра основания лежат в параллельных плоскостях. Так как при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то у цилиндра образующие параллельны и равны.

Поверхность цилиндра состоит из оснований и боковой поверхности. Боковая поверхность составлена из образующих. Цилиндр называется прямым, если его образующие перпендикулярны плоскостям основания. Радиусом цилиндра называется радиус его основания. Высотой цилиндра называется расстояние между плоскостями его оснований. Осью цилиндра называется прямая, проходящая через центры оснований. Она параллельна образующим. Конус Конусом называется тело, которое состоит из круга - основания конуса, точки, не лежащей в плоскости этого круга, - вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания. Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими конуса.

Поверхность конуса состоит из основания и боковой поверхности. Конус называется прямым, если прямая, соединяющая вершину конуса с центром основания. Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого кругового конуса называется прямая, содержащая его высоту

Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки. Эта точка называется центром шара, а данное расстояние радиусом шара. Граница шара называется шаровой поверхностью, или сферой. Таким образом, точками сферы являются все точки шара, которые удалены от центра на расстояние, равное радиусу. Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, также называется радиусом. Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром. Концы любого диаметра называются диаметрально противоположными точками шара. Шар, так же как цилиндр и конус, является телом вращения. Он получается при вращении полукруга вокруг его диаметра как оси.

Пирамидой называется многогранник, который состоит из плоского многоугольника - основания пирамиды, точки, не лежащей в плоскости основания, - вершины пирамиды и всех отрезков, соединяющих вершину пирамиды с точками основания. Отрезки, соединяющие вершину пирамиды с вершинами основания, называются боковыми ребрами. Поверхность пирамиды состоит из основания и боковых граней. Каждая боковая грань - треугольник. Одной из его вершин является вершина пирамиды, а противолежащей стороной - сторона основания пирамиды. Высотой пирамиды называется перпендикуляр, опущенный из вершины пирамиды, на плоскость основания. Треугольная пирамида называется также тетрайдером. Правильная пирамида Пирамида называется правильной, если ее основанием является правильный многоугольник, а основание высоты совпадает с центром этого многоугольника. Осью правильной пирамиды называется прямая, содержащая ее высоту. Очевидно, у правильной пирамиды боковые ребра равны; следовательно, боковые грани - равные равнобедренные треугольники. Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой. Боковой поверхностью пирамиды называется сумма площадей ее боковых граней. Многогранники  

Призмой называется многогранник, который состоит из двух плоских многоугольников, лежащих в разных плоскостях и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки эти многоугольников. Многоугольники называются основаниями призмы, а отрезки, соединяющие соответствующие вершины, - боковыми ребрами призмы. Так как параллельный перенос есть движение, то основания призмы равны. Так как при параллельном переносе плоскость переходит в параллельную плоскость, то у призмы основания лежат в параллельных плоскостях. Так как при параллельном переносе точки смещаются по параллельным прямым на одно и то же расстояние, то у призмы боковые ребра параллельны и равны. Поверхность призмы состоит из оснований и боковой поверхности. Боковая поверхность состоит из параллелограммов. У каждого из этих параллелограммов две стороны являются соответствующими сторонами оснований, а две другие - соседними боковыми ребрами. Высотой призмы называется расстояние между плоскостями ее основания. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани, называется диагональю призмы.

Измерение линейных величин Числовое значение физической величины длины называется размером. За размер принимается расстояние между двумя точками. Значение физической величины, которое идеальным образом характеризовало бы в качественном и количественном отношении соответствующую физическую величину называется истинным значением величины. На практике «истинное значение физической величины длины» заменяется «действительным значением», то есть значением полученным путём измерений и настолько близким к истинному значению, что в условиях измерительной задачи может быть использовано вместо него.

Тела вращения Цилиндр Цилиндром называется тело, которое состоит из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов. Круги называются основаниями цилиндра, а отрезки, соединяющими цилиндра. Так как параллельный перенос есть движение, то основания цилиндра равны. Так как при параллельном переносе плоскость переходит в параллельную плоскость (или в себя), то у цилиндра основания лежат в параллельных плоскостях. Так как при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то у цилиндра образующие параллельны и равны. Поверхность цилиндра состоит из оснований и боковой поверхности. Боковая поверхность составлена из образующих. Цилиндр называется прямым, если его образующие перпендикулярны плоскостям основания. Радиусом цилиндра называется радиус его основания. Высотой цилиндра называется расстояние между плоскостями его оснований. Осью цилиндра называется прямая, проходящая через центры оснований. Она параллельна образующим. Конус Конусом называется тело, которое состоит из круга - основания конуса, точки, не лежащей в плоскости этого круга, - вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания.

Отрезки, соединяющие вершину конуса с точьками окружности основания, называются образующими конуса. Поверхность конуса состоит из основания и боковой поверхности. Конус называется прямым, если прямая, соединяющая вершину конуса с центром основания. Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого кругового конуса называется прямая, содержащая его высоту Шар Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки. Эта точка называется центром шара, а данное расстояние радиусом шара. Граница шара называется шаровой поверхностью, или сферой. Таким образом, точками сферы являются все точки шара, которые удалены от центра на расстояние, равное радиусу. Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, также называется радиусом. Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром. Концы любого диаметра называются диаметрально противоположными точками шара. Шар, так же как цилиндр и конус, является телом вращения. Он получается при вращении полукруга вокруг его диаметра как оси. Пирамида Пирамидой называется многогранник, который состоит из плоского многоугольника - основания пирамиды, точки, не лежащей в плоскости основания, - вершины пирамиды и всех отрезков, соединяющих вершину пирамиды с точками основания. Отрезки, соединяющие вершину пирамиды с вершинами основания, называются боковыми ребрами. Поверхность пирамиды состоит из основания и боковых граней. Каждая боковая грань - треугольник. Одной из его вершин является вершина пирамиды, а противолежащей стороной - сторона основания пирамиды.

Высотой пирамиды называется перпендикуляр, опущенный из вершины пирамиды, на плоскость основания. Треугольная пирамида называется также тетрайдером. Правильная пирамида Пирамида называется правильной, если ее основанием является правильный многоугольник, а основание высоты совпадает с центром этого многоугольника. Осью правильной пирамиды называется прямая, содержащая ее высоту. Очевидно, у правильной пирамиды боковые ребра равны; следовательно, боковые грани - равные равнобедренные треугольники. Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой. Боковой поверхностью пирамиды называется сумма площадей ее боковых граней.

Измерения в геометрии

 Геометрические величины
Геометрические величины - это свойства геометрических фигур, характеризующие их форму и размеры. К ним относятся: длина, площадь, объем и величина угла.
В геометрии, прежде всего, изучают то число, которое получается в результате измерения величины, то есть меру величины при выбранной единице величины. Поэтому часто число называют длиной, площадью, объемом. Относительно этого числа решают различные теоретические задачи. Вообще правила измерения геометрических величин и их обоснование - важнейшая задача геометрии.

Длина

Отрезок - это часть прямой линии, ограниченная двумя точками - началом и концом.
А длина отрезка это расстояние от одной точки до другой. Определить длину отрезка возможно разными способами:

1. Длина отрезка с помощью линейки - для этого прикладываем к построенному на плоскости отрезку линейку с миллиметровыми делениями, причем начальную точку необходимо совместить с нулем шкалы линейки. Затем следует отметить на данной шкале расположение конечной точки данного отрезка. Полученное количество целых делений шкалы и будет являться длиной отрезка, выраженной в см. и мм.

2. Метод координат на плоскости - если известны координаты отрезка (х1;у1) и (х2;у2), то следует рассчитать его длину следующим образом. Из координат на плоскости второй точки следует вычесть координаты первой точки. В итоге должно получиться два числа. Каждое из таких чисел необходимо возвести в квадрат, а потом найти сумму этих квадратов. Из полученного числа следует извлечь квадратный корень, который будет являться расстоянием между точками. Поскольку данные точки являются концами отрезка, то данное значение и будет его длиной.

3. Метод координат в пространстве – нужно найти длину вектора, для этого:
Найдите координаты вектора, для этого из координат его конечной точки нужно вычесть координаты его начальной точки.

После этого нужно возвести каждую координату вектора в квадрат. Затем складываем квадраты координат. Чтобы найти длину вектора, нужно извлечь квадратный корень из суммы квадратов координат. Получили длину вектора, именно она и является отрезком в евклидовом пространстве. Площадь фигуры и ее измерение.

Площадь - это величина, которая указывает, сколько места занимает фигура на плоскости.

В качестве общепринятых единиц измерения площадей используют квадраты со сторонами 1 см, 1 дм, 1 м. Эти измерения соответственно называют: квадратный сантиметр – 1 см²;квадратный дециметр –
1 дм²;квадратный метр – 1 м².
Как можно сравнить площади фигур:
- «на глаз»;
- наложением;
- с помощью мерки;

Чтобы измерить площадь фигуры, нужно иметь единицу площади. Как правило, токай единицей является площадь квадрата со стороной, равному единичному отрезку.

Условимся площади единичного квадрата обозначать буквой Е, а число, которое получается в результате измерения площади фигуры –S (F). Это число называют численным значением площади фигуры F при выбранной единице площади Е. Оно должно удовлетворять условиям:

1. Число S(F) – положительное.

2. Если фигуры равны, то равны числовые значения из площадей.

3. Если фигура F состоит из фигур F1 и F2, то численное значение площади фигуры равно сумме численных значений площадей фигур F1 и F2.

4. При замене единицы площади численное значение площади данной фигуры F увеличивается (уменьшается) во столько же раз, во сколько новая единица меньше (больше) старой.

5. Численное значение площади единичного квадрата принимается равным 1, т.е. S(F) = 1.

6. Если фигура F1 является частью фигуры F2, то численное значение площади фигуры F1 не больше численного значения площади фигуры F2, т.е. F1 принадлежит F2 →S(F1) ≤ S(F2).



Поделиться:


Последнее изменение этой страницы: 2021-06-14; просмотров: 257; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.202.187 (0.032 с.)