Немезида: таинственный попутчик Солнца 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Немезида: таинственный попутчик Солнца



 

В прошлом веке ряд астрономов, изучая небесные светила главной последовательности, установили любопытный факт: оказалось, что в этом ряду преобладают двойные звезды. Опираясь на эту закономерность, ученые высказали предположения, что, поскольку Солнце является типичной звездой, то и оно должно относиться к двойным звездным системам. Так возникла гипотеза о Немезиде – гипотетическом спутнике Солнца, невидимого с Земли.

Следует также отметить, что с помощью гипотезы о существовании Немезиды ученые пытались объяснить периодичность массовой гибели огромного количества видов животных и растений на Земле.

Действительно, ископаемые останки живых организмов свидетельствуют, что время от времени на Земле случаются грандиозные катастрофы, приводящие к массовому вымиранию живых организмов. Причем происходят эти планетарные явления с удивительной периодичностью. Действительно, практически каждые 26–27 лет на Землю обрушивается своеобразная эпидемия, приводящая к массовому вымиранию живых организмов.

Гипотезу, с помощью которой можно было объяснить эти периодические процессы, в 1984 году предложила группа американских ученых во главе с Марком Дэвисом. Еще тогда ученые заявляли, что наше Солнце – это двойная звезда, которая имеет своего невидимого компаньона, который обращается вокруг него по вытянутой орбите на расстоянии около двух световых лет.

Когда эта незримая звезда приближается к Солнечной системе, она вынуждена пересечь облако Оорта – область, «заселенную» миллионами ядер комет. При появлении этой звезды в облаке происходят гравитационные возмущения, в результате которых во внутренние области Солнечной системы выбрасывается огромное количество комет. Часть из них обрушивается на Землю в виде настоящего кометного дождя, что в конечном итоге приводит к массовому вымиранию животных.

 

 

Немезида ждет своих исследователей

 

Однако долгое время эта гипотеза особым успехом в научных кругах не пользовалась. Но в начале нынешнего столетия американские физики Эдриан Мелот и Ричард Бэмбах снова стряхнули с нее архивную пыль. На основе данных о периодическом вымирании видов на Земле исследователи попытались реконструировать предполагаемую орбиту таинственной Немезиды.

Для начала ученые объединили в одно целое огромный массив информации о периодических вымираниях живых организмов за последние 500 миллионов лет. То есть они исследовали вдвое больший период времени, чем их предшественники. На основании этих данных ученые еще раз, причем с высокой долей вероятности, подтвердили, что катастрофы происходят регулярно через 27 миллионов лет.

На первый взгляд периодические встречи с «темной звездой» отлично объясняют эту цикличность.

Однако именно эта регулярность, считают ученые, делает гипотезу об убийственной роли Немезиды несостоятельной. Дело в том, что движение этой невидимой звезды неминуемо сопровождалось бы искажением ее орбиты под влиянием гравитации ближайших звезд, и случаи вымирания вряд ли происходили бы с такой точной периодичностью.

Вообще же, согласно проведенным расчетам, вес Немезиды в 10 раз меньше массы Солнца, то есть в 30 000 раз превышает массу Земли. Вокруг Солнечной системы она обращается за 999,5 года, при этом скорость ее движения составляет 2,5 километра в секунду.

А обнаружить эту звезду с помощью телескопов не могут потому, что она давно потухла и превратилась в сверхплотный нейтронный карлик диаметром 40 километров. Косвенным же подтверждением существования Немезиды является движение недавно открытого планетоида Седны. И вполне вероятно, что именно это небесное тело в скором будущем предоставит определенные свидетельства в пользу существования загадочной Немезиды.

Один из исследователей – профессор планетной астрономии в Калифорнийском технологическом институте Майкл Браун – сделал следующие выводы относительно планетоида Седны. «Она просто не может находиться там, где она есть, – заявил ученый. – Нет никакой видимой силы, которая могла бы поместить планетоид на такую орбиту. Седна, несмотря на свою эксцентрическую орбиту, все же не приближается в перигелии достаточно близко к Солнцу, чтобы ощутить его гравитационное воздействие, и не удаляется слишком далеко в афелии, чтобы попасть под влияние других звезд. Очень трудно объяснить такое положение Седны, если, конечно, она не сформировалась именно там, где она сейчас находится. Мне кажется, – продолжает ученый, – что орбита Седны сформировалась на ранних стадиях образования Солнечной системы. Звезды галактики тогда находились намного ближе друг к другу. Возможно, эти звезды оказали воздействие на планетоид с внешней стороны его орбиты, а затем удалились на значительное расстояние. Поэтому я считаю Седну реликтом, своего рода “ископаемой окаменелостью”, по которой можно изучать самую раннюю историю Солнечной системы».

Однако с ним по ряду принципиальных положений не соглашается астрофизик Уолтер Краттенден. В частности, он отмечает, что орбита Седны хоть и весьма необычна, тем не менее орбитальный период в 12 тысяч лет находится в полном соответствии с предполагаемой периодичностью движения звезды – спутника Солнца. А это значит, что орбита Седны отражает текущую конфигурацию Солнечной системы, а не только ее историю.

Краттенден считает маловероятным, что Седна могла сохранять столь вытянутую орбиту с момента образования Солнечной системы до наших дней, то есть в течение нескольких миллиардов лет, поскольку эксцентриситет обычно уменьшается с течением времени. Скорее всего поведение планетоида свидетельствует о действии каких‑то неизвестных сил в Солнечной системе. Наиболее вероятной из таких сил является гравитационное притяжение темного спутника Солнца.

Итак, поиск таинственной Немезиды продолжается. И хотя теоретические данные говорят в пользу ее существования, наблюдений, которые полностью подтвердили бы факт присутствия Немезиды во вселенских просторах, пока нет. Хотя, как считают некоторые ученые, она вполне может давно присутствовать в звездных каталогах, однако распознать в ней спутницу Солнца тяжело. И прежде всего потому, что движется она вместе с Солнцем, и скорость ее перемещения по небу будет очень невелика. Но именно по быстрому движению слабых объектов астрономы и ищут наших ближайших звездных соседей.

 

 

Глава 10. Парад планет

 

Тайны рождения планет

 

Солнечная система состоит, как известно, из одной звезды – Солнца, восьми планет и ряда менее значительных тел, таких, как спутники планет. Все в ней определяется Солнцем, которое является самым массивным телом и единственным, обладающим собственным свечением.

Остальные члены Солнечной системы светят отраженным солнечным светом и поэтому выглядят такими яркими на небе.

Планеты в свою очередь делятся на две хорошо различающиеся группы. В первую входят относительно небольшие планеты: Меркурий, Венера, Земля и Марс. Все они имеют твердую поверхность и, по‑видимому, состоят из сходного по составу вещества.

Ко второй группе относятся планеты‑гиганты: Юпитер, Сатурн, Уран и Нептун. Эти тела совершенно отличны от планет земной группы: они скорее газовые и жидкие, чем твердые, с очень плотными атмосферами. Их масса настолько велика, что они смогли удержать основную часть первоначального водорода. Плотности их очень низкие: а плотность вещества на Сатурне даже меньше плотности воды.

После небольшого путешествия по Солнечной системе, конечно, хотелось бы поближе познакомиться с ее представителями – планетами.

Общепринятой теории, в которой бы «по полочкам» были разложены все процессы и явления, приведшие к формированию планетных систем вокруг звезд, астрофизики пока еще не предложили. И, как в большинстве случаев, о событиях вселенского или галактического масштаба ученые имеют лишь научные гипотезы.

 

 

Э. Сведенборг считал, звезды возникли в результате вихревого движения вещества космической туманности

 

Самой долгоживущей и одновременно наиболее известной является небулярная гипотеза. В соответствии с ней Солнце и планеты возникли из вращающейся космической туманности, которая представляла собой сплошное газово‑пылевое облако. А так как латинское слово «nebula» означает – «туманность», то соответственно эта гипотеза получила название «небулярной». Возраст этой гипотезы ни много ни мало – более двух с половиной веков.

А родилась она в 1755 году, когда в Кенигсберге была напечатана и вышла в свет книга «Всеобщая естественная история и теория неба». Ее автором был выпускник Кенигсбергского университета Эммануил Кант.

Впрочем, за шесть лет до «Всеобщей истории…» Канта, точнее в 1749 году, в печати появилась книга знаменитого шведского писателя‑мистика Эмануэля Сведенборга (1688–1772). В ней он изложил гипотезу, по его словам, рассказанную ему ангелами, в соответствии с которой звезды возникли в результате вихревого движения вещества космической туманности.

Книга, в которой излагалась эта гипотеза, была не из дешевых, поэтому купили ее лишь три частных лица. И одним из них был Кант.

В связи с этим событием и появилось предположение, что идею происхождения планет из пылевого облака будущий великий философ почерпнул из книги Сведенборга.

И хотя книгой Канта никто не заинтересовался и практически весь ее тираж был отправлен в макулатуру, тем не менее гипотеза Канта о возникновении планет из пылевого облака – первоначального Хаоса – выдержала испытание временем и в последующие десятилетия служила достаточно надежным фундаментом для многих теоретических построений.

Через сорок с лишним лет, в 1796 году, гипотезу, во многом похожую на кантовскую, выдвинул французский математик и астроном Пьер‑Симон Лаплас. Но, в отличие от Канта, он дал ей еще и четкое математическое обоснование.

По именам двух ее создателей это теоретическое построение, объясняющее основные механизмы происхождения Солнечной системы, получило название гипотезы Канта – Лапласа.

Если учитывать, сколь скудными были знания ученых о Вселенной в то время и как много известно о ней теперь, понятно, что и представления о газово‑пылевом зарождении Солнца и планет во многом изменились в соответствии с новыми сведениями о свойствах и строении материи.

Современные астрофизики считают, что процессы, положившие начало формированию Солнечной системы, начались около 10 миллиардов лет назад. Продукт, ставший основой для образования Солнца и окружающих его планет, на три четверти состоял из водорода и на одну четверть – из гелия. Остальных же элементов в этом химическом бульоне было ничтожно мало.

Образовавшееся облако постоянно вращалось и одновременно, под действием сил гравитации постепенно сжималось. Со временем в его центре сконцентрировалась практически вся масса вещества, которая продолжала постепенно уплотняться. И продолжался этот процесс до тех пор, пока плотность внутри «ядра» не достигла необходимой для запуска термоядерных реакций величины. В результате этих реакций началось выделение огромного количества тепла и света, что и привело к появлению звезды, имя которой Солнце.

Когда вспыхнуло Солнце, остатки газово‑пылевого облака, словно хоровод вокруг новогодней елки, стали вращаться вокруг него, постепенно приобретая форму плоского диска. В нем, опять же, со временем стали появляться области с более высокой плотностью, которые за миллиарды лет в конце концов образовали планеты.

Причем первыми заявили о себе планеты, расположенные рядом с Солнцем. Они представляли собой сравнительно небольшие тела с высокой плотностью – железокаменные и каменные сферы, из которых впоследствии появились планеты земного типа. В более же отдаленных от Солнца областях сформировались планеты‑гиганты, состоящие в основном из газов.

Так в течение миллиардов лет пылевой диск, положивший начало Солнечной системе, перестал существовать, превратившись в планетную систему.

Но практически любое знание эволюционирует. Видимо, в соответствии с этим положением, и появилась несколько лет назад гипотеза академика А.А. Маракушева, согласно которой все планеты земного ряда в прошлом тоже были одеты в толстую газовую «шубу» и ничем не отличались от планет‑гигантов. Но постепенно вселенские ветры разнесли эти газы по окраинным областям Солнечной системы, оставив рядом с Солнцем лишь твердые ядра бывших планет‑гигантов, которые теперь являются планетами земного типа.

Эта гипотеза находит подтверждение в экзопланетах, которые тоже являются газовыми шарами, расположенными почти рядом со своими звездами. И, возможно, под действием высоких температур и вихрей звездного ветра они тоже сбросят свои газовые «шубы» и превратятся в такие же планеты, как Земля, Венера, Марс.

А вот астрофизик Сергей Ниякшин высказал гипотезу, которая привычные представления о происхождении планет, по сути, ставит с ног на голову. В модели этого ученого планеты формируются не в окрестностях Солнца, а, наоборот, на внушительном от него расстоянии – более 50 астрономических единиц, то есть в 50 раз дальше от светила, чем находится сегодняшняя Земля.

В этом случае влияние гравитации Солнца незначительно, поэтому протопланетный газопылевой диск за счет собственной гравитации начинает притягивать окружающий его газ и пылинки и начинает расти. В результате со временем появляются огромные и рыхлые структуры, которые становятся «зародышами планет». Со временем в этих образованиях более тяжелые элементы сдвигаются ближе к центру, формируя твердое ядро. Эти «зародыши» вращаются в одном направлении, поскольку и газопылевое облако, из которого они сформировались, тоже движется в этом направлении.

Увеличиваясь в размерах, твердое ядро «зародыша планеты» одновременно испытывает все большее торможение и по этой причине постепенно приближается к Солнцу. Когда же зародыш оказывается на неком конкретном расстоянии, то под действием приливных сил и солнечной радиации он начинает «освобождаться» от разреженной газовой оболочки, пока в конце концов вокруг него не останется лишь тонкий слой атмосферы, как, например, у Земли. Но вместе с оболочкой теряются и те твердые фрагменты, которые еще не успели упасть на поверхность рождающейся планеты.

Причем как рассчитал автор этой гипотезы, граница, где происходит эта потеря, почти в точности совпадает с радиусом Пояса астероидов. Следовательно, Ниякшин объясняет не только механизм появления и распределение планет в пределах Солнечной системы, но и выдвигает гипотезу происхождения самого Пояса астероидов.

Таким образом, в гипотезе Ниякшина газовые планеты‑гиганты вроде Юпитера – лишь «зародыши» каменистых планет земного типа.

Разобравшись с историей рождения планет, можно перейти и к каждой из них в отдельности. Начнем с Меркурия.

 

Железное сердце Меркурия

 

Меркурий иногда можно различить невооруженным глазом, но увидеть его намного сложнее, чем четыре другие планеты, известные с давних времен: Венеру, Марс, Юпитер и Сатурн.

 

 

Американская автоматическая межпланетная станция «Маринер‑10»

 

Меркурий – самая близкая к Солнцу планета, обращающаяся вокруг него за 88 земных суток на среднем расстоянии 58 миллионов километров. По размерам и массе Меркурий ближе к Луне, чем к Земле. Его диаметр составляет 4880 километров.

Казалось бы, Меркурий должен быть похожим на другие планеты земной группы. Однако это не так. Например, по средней плотности вещества он, как ни странно, очень сильно отличается от всех остальных планет земной группы, в том числе и от Луны. Его средняя плотность (5,4 грамма на сантиметр кубический) уступает лишь плотности Земли. Впрочем, если учитывать тот факт, что на плотность нашей планеты влияет более сильное сжатие вещества из‑за большего ее диаметра, то в случае, если бы размеры планет были одинаковыми, вещество Меркурия оказалось бы плотнее земного примерно на 30 %.

Неожиданными для астрономов оказались и другие данные, полученные американской автоматической межпланетной станцией «Маринер‑10». Анализ этих результатов показал, что у Меркурия на удивление очень слабое магнитное поле: его величина составляет лишь около 1 % от земного.

Этот факт для астрофизиков имел очень важное значение. И связано это с тем, что среди планет земной группы только Земля и Меркурий имеют глобальную магнитосферу. А ее присутствие на планете ученые объясняют наличием в недрах Меркурия частично расплавленного металлического ядра, которое схоже с земным. Причем оно, по мнению исследователей, очень крупное – от 60 % до 70 % массы самой планеты. Радиус же этого ядра около 1800 километров, то есть 3/4 радиуса Меркурия.

На столь значительные размеры ядра указывает, о чем уже говорилось раньше, высокая плотность планеты. А это, по мнению астрономов, позволяет предполагать, что Меркурий содержит много железа – единственного тяжелого элемента, имеющего широкое распространение в природе.

В настоящее время существует несколько гипотез, с помощью которых ученые пытаются объяснить кажущееся несоответствие между высокой плотностью Меркурия и его сравнительно небольшим диаметром.

Сегодня в астрофизике принято считать, что в пылевом облаке, из которого впоследствии образовались планеты, температура граничащей с Солнцем области была значительно выше, чем на его периферии. Поэтому более легкие химические элементы выносились в удаленные холодные части облака.

В конце концов эти процессы привели к тому, что там, где сейчас находится Меркурий, стали преобладать более тяжелые элементы, в частности железо, из которого и сформировалось ядро планеты.

А вот согласно другой гипотезе высокая плотность Меркурия обусловлена тем, что в результате восстановительных реакций окислы и оксиды легких элементов превратились в их более тяжелые, металлические, формы. Происходили же эти процессы под воздействием очень мощной солнечной радиации.

Уплотниться вещество Меркурия могло и в том случае, когда под воздействием высоких солнечных температур внешний, более легкий слой первоначальной коры планеты просто испарился.

А возможно, значительная часть своей более легкой оболочки Меркурий потерял при столкновениях с другими небесными телами меньших размеров. В результате этих соударений происходили взрывы, за которыми следовали выбросы вещества в космическое пространство.

Есть у Меркурия еще одна, свойственная только ему, особенность. Это его своеобразный рельеф, представленный извилистыми уступами высотой в несколько километров, длина которых достигает сотен километров.

Появление этих образований на Меркурии связано с историей его развития. Когда на ранних стадиях планета остывала, ее объем уменьшался, а каменная оболочка, которая остыла и затвердела раньше, чем центральная часть, в силу физических законов стала сжиматься.

В связи с этим внешняя оболочка, которая до этого лежала ровным слоем, на сокращающейся поверхности вместиться уже не могла, поэтому стала трескаться, а края этих фрагментов коры начали наползать один на другой, образуя чешуйчатый рельеф.

Несомненно, такие перемены в структуре коры не могли не сопровождаться мощными сотрясениями ее поверхности и недр. А вот «трясет» ли Меркурий в настоящее время, ученые не знают.

Выяснить это им должен помочь посадочный аппарат, оборудованный сейсмометром. Планируется, что в 2012 году его доставит на Меркурий автоматическая станция «БепиКоломбо», которая является совместным проектом европейского и японского космических ведомств.

 

Странности Меркурия

 

На Меркурии круглые сутки царит сплошная тьма. А причина этого – практически полное отсутствие атмосферы. Планету окружает только экзосфера – слой настолько разряженного пространства, что нейтральные атомы, входящие в его состав, практически никогда не сталкиваются.

В этой пространственной «пустыне» находятся лишь атомы гелия, которых больше всего, водорода, кислорода, неона, натрия и калия. И то они присутствуют в атмосфере Меркурия лишь потому, что их «выбили» из поверхности Меркурия частицы, прилетевшие от Солнца, – фотоны и ионы, а также очень маленькие метеориты.

А поскольку на Меркурии нет атмосферы, нет на нем и звуков. Ведь для распространения звука необходима упругая среда, то есть воздух, являющийся проводником звуковых волн.

 

 

Мрачный и безмолвный Меркурий

 

Но не своим безмолвием мог бы поразить Меркурий оказавшегося на его поверхности воображаемого астронавта, а удивительнейшим зрелищем Солнца на своем небосводе. Там это светило выглядит в 2–3 раза больше, чем на земном небе.

Но даже не это главное. Сильная сдавленность орбиты Меркурия, а также своеобразие во вращении планеты вокруг своей оси и вокруг Солнца, привели к тому, что движение Солнца по меркурианскому небосводу имеет свои поразительные особенности.

Так, в районах меридианов 0° и 180° западной долготы рано утром «маленькое», но при этом в два раза большее, чем «земное», Солнце «встает» очень быстро. Но по мере приближения к зениту его скорость затухает, а само оно становится ярче, жарче и в 1,5 раза крупнее.

Наконец, пик достигнут. Но как только Солнце «проскочит» точку зенита, оно сначала замирает, словно в раздумье над своим будущим, а потом в течение 2–3 земных суток начинает понемногу… пятиться назад. Затем еще раз, словно войдя в ступор, застывает, и вдруг, будто решившись на героический поступок, с нарастающей скоростью стремглав уходит вниз за горизонт, при этом заметно уменьшаясь в размерах. И происходит все это лишь потому, что Меркурий отдаляется от Солнца, перемещаясь в вытянутую часть своей орбиты.

Когда же Солнце находится вблизи 90° и 270° западной долготы, здесь оно выкидывает совсем другие коленца: за сутки оно трижды всходит и трижды заходит.

С наступлением утра на востоке горизонт озаряется очень медленно поднимающимся ярко светящимся диском огромных размеров: в эти часы Солнце в 3 раза больше, чем на земном небосводе. Выплыв из‑за горизонта, светило еще какое‑то время поднимается, а затем неожиданно останавливается. А потом, словно ветреная женщина, меняет свое решение, опускается вниз и на короткое время скрывается за горизонтом.

Но на этом странное поведение Солнца не завершается. Вскоре начинается его повторный восход. Теперь уже Солнце медленно, словно альпинист на вершину горы, ползет по небу вверх. Но, в отличие от скалолаза, постепенно ускоряет свое движение. При этом оно очень быстро уменьшается в размерах, тускнеет, а потом и совсем тухнет.

Через точку зенита это «мини‑Солнышко», словно испугавшись умопомрачительной высоты, проносится на большой скорости. А потом уже замедляет свой бег, увеличивается в размерах и с достоинством скрывается за вечерним горизонтом.

Проходит немного времени, и Солнце опять поднимается на небольшую высоту, замирает на месте, а затем, после недолгого отдыха, снова плывет к горизонту, за которым вскоре и скрывается.

Такие «пируэты» в движении Солнца происходят потому, что, когда Меркурий проходит перигелий, его угловая скорость на коротком отрезке орбиты становится больше, чем угловая скорость его вращения вокруг собственной оси.

Это приводит к перемещению Солнца на небосводе планеты в течение короткого промежутка времени – около двух земных суток – вспять его обычному ходу.

Имеет свои любопытные особенности и перемещение по небу Меркурия звезд: они движутся в три раза быстрее, чем Солнце.

Звезда, которая вместе с Солнцем появится из‑за горизонта, зайдет на западе еще до того, как Солнце доберется до зенита. А пока Солнце будет опускаться к горизонту, звезда еще раз взойдет на востоке.

 

Горячий лед Меркурия

 

Сведения, которые передают на Землю спутники и автоматические станции, говорят о том, что поверхность Меркурия, на которую падает огромное количество солнечной энергии, имеет температуру, в несколько раз большую, чем в самых горячих точках нашей планеты.

Действительно, в полдень на раскаленной Солнцем поверхности Меркурия температура достигает +350 °С. Когда же Меркурий находится на минимальном расстоянии от звезды, она подскакивает даже до +430 °С. И лишь когда планета удаляется на максимальное от Солнца расстояние, на Меркурии становится «прохладнее», поскольку температура в это время опускается всего до +280 °С.

 

 

Южный полюс Меркурия. Фото со станции «Маринер‑10»

 

Кстати, на Меркурии наблюдаются такие же температурные перепады, как и в пустынях на Земле. Сразу после захода Солнца в зоне экватора температура резко снижается до –100 °С; более того, в полночь она падает даже до –170 °С. Однако с рассветом поверхность опять начинает быстро прогреваться, вскоре достигая +230 °С.

Но вот что любопытно. Измерения температуры грунта на небольших глубинах показали, что она практически совсем не зависит от времени суток. Это значит, что поверхностный слой планеты обладает высокими теплоизолирующими свойствами. А так как световой день на Меркурии в 88 раз длиннее земных суток, то за этот период успевает хорошо прогреться, пусть и тонкий, но все‑таки весь поверхностный слой планеты.

Безусловно, такого пекла ни одна жидкость выдержать не может. А лед? Конечно, вопрос мог бы показаться абсурдным, если бы не одно обстоятельство.

Дело в том, что когда в 1992 году проводились радиолокационные исследования Меркурия с Земли, то недалеко от северного и южного полюсов были обнаружены места, поверхность которых сильнее других участков планеты отражала радиоволны.

На основании этих данных и появилась версия о наличии льда в приповерхностном слое Меркурия. В ходе дальнейших радиолокационных исследований, проведенных несколькими научными центрами, было обнаружено около 20 округлых пятен площадью в несколько сот квадратных километров, которые имели повышенное радиоотражение.

Астрономы предполагают, что в этих зонах находятся кратеры. А поскольку они располагаются рядом с полюсами планеты, то солнечные лучи лишь скользят по ним, а то и вовсе в них не попадают. Именно такие постоянно затененные кратеры есть и на Луне. Исследование этих «щербин», проведенное со спутников, позволило обнаружить в них некоторое количество водного льда.

В пользу возможного наличия на Меркурии льда говорят и расчеты, которые показывают, что в некоторых местах постоянно затененных кратеров, расположенных поблизости от полюсов, температура опускается до –175 °С. А при таких условиях, конечно же, лед может существовать в течение долгого времени.

Более того, расчеты показывают, что даже на открытых пространствах вблизи полюсов дневная температура не поднимается выше –105 °С. Прямые же измерения температуры полярных районов Меркурия до сих пор не проводились.

И все же говорить о наличии льда на поверхности Меркурия или на небольшой глубине пока преждевременно. И прежде всего потому, что повышенное радиоотражение характерно и для каменных горных пород, в которых присутствуют соединения металлов с серой.

Не исключено также, что это отражение производят конденсаты металлов, в частности ионов натрия, которые появились на поверхности Меркурия после ее «бомбардировок» частицами солнечного ветра.

Но, опять же, неувязка: почему тогда «ледяные» участки четко привязаны к полярным областям Меркурия?

 



Поделиться:


Последнее изменение этой страницы: 2021-07-19; просмотров: 47; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.109.201 (0.066 с.)