Фотоны. Уравнение Эйнштейна для фотоэффекта . 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Фотоны. Уравнение Эйнштейна для фотоэффекта .



Фото́н — элементарная частица, квант электромагнитного излучения (в узком смысле —света). Это безмассовая частица, способная существовать, только двигаясь со скоростью света. Электрический заряд фотона также равен нулю.Фотону как квантовой частице свойственен корпускулярно-волновой дуализм, он проявляет одновременно свойства частицы и волны. Фотоны обозначаются буквой , поэтому их часто называют гамма-квантами (особенно фотоны высоких энергий); эти термины практически синонимичны. С точки зрения Стандартной модели фотон является калибровочным бозоном. Виртуальные фотоны[3] являются переносчиками электромагнитного взаимодействия, таким образом, обеспечивая взаимодействие, например, между двумя электрическими зарядами.

Фотон — самая распространённая по численности частица во Вселенной. На один нуклон приходится не менее 20 миллиардов фотонов

Внешний фотоэффект хорошо объясняется квантовой теорией. Согласно этой теории, электрон получает сразу целиком всю энергию фотона e=hv, которая расходуется на совершение работы выхода электрона из вещества (катода) и на сообщение электрону кинетической энергии:

 

Это уравнение называется уравнением Эйнштейна для внешнего фотоэффекта.

Уравнение объясняет все свойства и законы фо­тоэффекта:

  1. безинерционность фотоэффекта объясняется тем, что переда­ча энергии при столкновении фотона с электроном происходит почти мгновенно;
  2. поэтому число вырванных фотоэлектронов должно быть пропор­ционально числу поглощенных фотонов, т.е. световому потоку (пер­вый закон фотоэффекта);
  3. максималь­ная кинетическая энергия фотоэлектрона линейно возрастает с уве­личением частоты падающего излучения и не зависит от величины светового потока (числа фотонов), так как ни работа выхода А, ни частота излучения n от светового потока не зависят;
  4. существует мини­мальная частота света nкр, необходимая для возникновения фотоэффекта, при которой кинетическая энергия фотоэлектронов равна нулю ().

или , (4)

т.е. фотоэффект имеет "красную границу" (этот термин подчеркива­ет невозможность возбуждения эффекта при частоте, меньшей nкр). Так как "красная граница" определяется работой выхода электрона из металла, она зависит лишь от химической природы вещества и со­стояния его поверхности.

Величина задерживающего потенци­ала не зависит от свето­вого потока, а зависит только от частоты пада­ющего света.

. (5)

Уравнение Эйнштейна для многофотонного (нелинейного) фотоэффекта:

 

40.масса и импульс фотона, давление света.

Согласно гипотезе световых квантов Эйнштейна, свет испускается, поглощается и распространяется дискретными порциями (квантами), названными фотонами. Энергия фотонa ξ0 =hv. Его масса находится из закона взаимосвязи массы и энергии:

(4.1)

Фотон— элементарная частица, которая всегда (в любой среде!) движется со скоростью света с и имеет массу покоя, равную нулю. Следовательно, масса фотона отличается от массы таких элементарных частиц, как электрон, протон и нейтрон, которые обладают отличной от нуля массой покоя и могут находиться в состоянии покоя.

Импульс фотона pv получим, если в общей формуле теории относительности IM массу покоя фотона m= 0:

(4.2)

Из приведенных рассуждений следует, что фотон, как и любая другая частица, характеризуется энергией, массой и импульсом. Выражения связывают корпускулярные характеристики фотона — массу, импульс и энергию волново й характеристикой света — его частотой v.

Если фотоны обладают импульсом, то свет, падающий на тело, должен создавать на него давление. Согласно квантовой теории, давление света на поверхность обусловлено тем, что каждый фотон при соударении с поверхностью передает ей свой импульс.

Рассчитаем с точки зрения квантовой теории световое давление, оказываемое на поверхность тела потоком монохроматического излучения (частота v), падающего перпендикулярно поверхности. Если в единицу времени на единицу площади поверхности тела падает N фотонов, то при коэффициенте отражения р света от поверхности тела pN фотонов отразится, а (1—р) N —поглотится. Каждый поглощенный фотон передает поверхности импульс pY=hv/c, а каждый отраженный — 2py=2hv/c (при отражении импульс фотона изменяется на — ру). Давление света на поверхность равно импульсу, который передают поверхности в 1 с N фотонов:

Nhv = Ee есть энергия всех фотонов, падающих на единицу поверхности в единицу времени, т. е, энергетическая освещенность поверхности, a Ee/c=w объемная плотность энергии излучения. Поэтому давление, производимое светом при нормальном падении на поверхность,

(4.3)

Формула (4.3), выведенная на основе квантовых представлений, совпадает с выражением, получаемым из электромагнитной (волновой) теории Максвелла. Таким образом, давление света одинаково успешно объясняется и волновой, и квантовой теорией. Как уже говорилось, экспериментальное доказательство существования светового давления на твердые тела и газы дано в опытах П. Н. Лебедева, сыгравших в свое время большую роль в утверждении теории Максвелла. Лебедев использовал легкий подвес на тонкой нити, по краям которого прикреплены легкие крылышки, одни из которых зачернены, а поверхности других зеркальные. Для исключения конвекции и радиометрического эффекта использовалась подвижная система зеркал, позволяющая направлять свет на обе поверхности крылышек, подвес помещался в откачанный баллон, крылышки подбирались очень тонкими (чтобы температура обеих поверхностей была одинакова). Световое давление на крылышки определялось по углу закручивания нити подвеса и совпадало с теоретически рассчитанным. В частности оказалось, что давление света на зеркальную поверхность вдвое больше, чем на зачерненную (см. (4.3)).



Поделиться:


Последнее изменение этой страницы: 2021-07-18; просмотров: 65; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.39.74 (0.012 с.)