Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Исполнительные двигатели постоянного токаСодержание книги Поиск на нашем сайте
Микродвигатели постоянного тока, применяемые в автоматических устройствах для преобразования электрического сигнала в механическое перемещение вала, называются исполнительными двигателями. В зависимости от конструкции якоря исполнительные двигатели постоянного тока подразделяют на двигатели с якорем обычного типа, полым (печатным) и беспазовым (гладким) якорем.
Для уменьшения влияния реакции якоря и ЭДС самоиндукции коммутирующей секции и улучшения условий коммутации применяют двигатели с гладким якорем (рис. 10.1). Обмотку 1 такого якоря укладывают на наружной поверхности якоря 2. Ее выполняют в два слоя и заливают эпоксидной смолой с ферромагнитным наполнителем 3. Микродвигатели этого типа имеют более высокое быстродействие по сравнению с машинами с зубчатым якорем из-за большей индукции в воздушном зазоре(индукция не ограничивается насыщением зубцов) и меньшего момента инерции якоря. Уменьшение момента за счет уменьшенного диаметра (при увеличенной длине). Последнее возможно, поскольку лучшие условия коммутации позволяют значительно увеличить длину и уменьшить диаметр якоря Значительно снижена инерция в двигателях с полым якорем. Магнитный поток в них создается обмоткой возбуждения (рис. 10.2) или постоянными магнитами, якорь представляет полый стакан 1, расположенный между полюсами 2 с обмоткой возбуждения 3 и неподвижным ферромагнитным сердечником 4, который насаживают на втулку 5 подшипникового щита. Вместо сердечника внутри якоря может быть установлен неподвижный цилиндрический магнит. Обмотку якоря 6 укладывают на цилиндрический каркас и заливают эпоксидным компаундом, концы секций обмотки, как и в обычном ляет значительно увеличить индукцию в воздушном зазоре машины, то есть ее магнитный поток и номинальный вращающий момент по сравнению с микродвигателями, имеющими якорь обычного типа, что также способствует повышению быстродействия двигателя. Поскольку секции обмотки якоря окружены не ферромагнитным материалом, а воздухом, они имеют гораздо меньшую индуктивность, что существенно улучшает условия коммутации двигателя. Щетки в таких микродвигателях работают практически без искрения даже при кратковременных перегрузках, вследствие чего можно применять большие форсировки для ускорения переходных процессов. Недостатком микродвигателей с полым якорем является необходимость значительного увеличения МДС обмотки возбуждения, так как немагнитный зазор у них гораздо больше, чем в обычных двигателях, что приводит к увеличению потерь в обмотке возбуждения. КПД рассматриваемых двигателе из-за отсутствия потерь мощности в стали имеет такую же величину, как и у микродвигателей с якорем обычной конструкции. Разновидностью двигателя с полым якорем является двигатель с дисковым якорем, у которого печатная обмотка нанесена на немагнитный диск. Магнитный поток создается постоянными магнитами или электромагнитами, расположенными по одну сторону диска с обеих сторон. В исполнительных двигателях постоянного тока обмотки якоря и главных полюсов питаются от двух независимых источников тока. Одна из них (условно называемая обмоткой возбуждения) подключена постоянно к источнику с неизменным напряжением UB, а на другую (обмотку управления) подается напряжение управления U У только при необходимости вращения вала двигателя. В зависимости Каждый из этих способов имеет свои преимущества и недостатки. При полюсном управлении меньше мощность управления, а при якорном - выходные характеристики параллельны и линейны.
Тахогенераторы Тахогенераторы относят к информационным машинам, то есть к машинам от которых требуется высокая точность преобразования электрических или механических входных - сигналов управления соответственно в механические или электрические выходные величины, находящиеся в строго постоянной вполне определенной зависимости от входных сигналов. Тахогенераторы преобразуют частоту вращения механизма, с валом которого они соединены, в строго пропорциональное выходное напряжение:
где В системах автоматики тахогенераторы служат: для измерения частоты вращения (в этом случае выходное напряжение подается на вольтметр, шкала которого отградуирована в об/мин); для осуществления обратной связи по скорости в следящих системах; для осуществления электрического дифференцирования ( Тахогенераторы постоянного тока по принципу действия и конструктивному оформлению представляют собой машины постоянного тока чаще с возбуждением от постоянных магнитов (рис. 10.4, б), реже с электромагнитным возбуждением (рис. 10.4, а). В них используют якорь обычного типа, полый или дисковый с печатной обмоткой.
Выходное напряжение тахогенератора
Представив в (10.2) ЭДС по (4.5), ток через напряжение и сопротивление нагрузки:
получим:
Решив это равенство относительно напряжения
При
При постоянном потоке Ф, сопротивлениях якоря
где Крутизна выходной характеристики растет с уменьшением Зону частот вращения от Практически выходная характеристика отклоняется от линейного закона в результате размагничивающего действия реакции якоря(кривая 4 на рис. 10.4, в), наличия нелинейного сопротивления в переходном контакте между коллектором и щетками и изменения тока возбуждения из-за увеличения сопротивления обмотки возбуждения при ее нагреве. Для уменьшения погрешности увеличивают сопротивление внешней нагрузки, суживают пределы измерения скорости механизмов, выполняют тахогенераторы с сильно насыщенной магнитной системой. Последнее уменьшает влияние изменения сопротивления обмотки возбуждения при нагреве и размагничивающее действие реакции якоря.
|
|||||
|
Последнее изменение этой страницы: 2021-05-12; просмотров: 173; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.2 (0.008 с.) |