Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Состав и функции оптического аппарата глаза.↑ Стр 1 из 9Следующая ⇒ Содержание книги
Поиск на нашем сайте
Аккомодация, ее механизм. Аккомодация глаза (лат. accomodatio — приспособление) — свойство глаза изменять преломляющую силу для приспособления к восприятию предметов, находящихся от него на различных расстояниях. Механизм аккомодации глаза заключается в следующем: при сокращении волокон заложенной в цилиарном теле аккомодационной мышцы происходит расслабление цинновой связки, посредством которой хрусталик подвешен к цилиарному телу; в результате этого хрусталик, обладающий эластическими свойствами, приобретает более выпуклую форму, и преломляющая способность глаза усиливается (рис.). При расслаблении аккомодационной мышцы волокна цинновой связки натягиваются, хрусталик уплощается, и преломляющая сила оптической системы глаза соответственно уменьшается. Аккомодация глаза может осуществляться в определенных пределах, зависящих главным образом от эластических свойств хрусталика. Аккомодационный аппарат Аккомодационный аппарат глаза обеспечивает фокусировку изображения на сетчатке, а также приспособление глаза к интенсивности освещения. Он включает в себя радужку с отверстием в центре — зрачком — и ресничное тело с ресничным пояском хрусталика. Фокусировка изображения обеспечивается за счёт изменения кривизны хрусталика, которая регулируется цилиарной мышцей. При увеличении кривизны хрусталик становится более выпуклым и сильнее преломляет свет, настраиваясь на видение близко расположенных объектов. При расслаблении мышцы хрусталик становится более плоским, и глаз приспосабливается для видения удалённых предметов. У других животных, в частности, головоногих, при аккомодации превалирует как раз изменение расстояния между хрусталиком и сетчаткой. зрачок представляет собой отверстие переменного размера в радужной оболочке. Он выполняет роль диафрагмы глаза, регулируя количество света, падающего на сетчатку. При ярком свете кольцевые мышцы радужки сокращаются, а радиальные расслабляются, при этом зрачок сужается, и количество света, попадающего на сетчатку уменьшается, это предохраняет её от повреждения. При слабом свете наоборот сокращаются радиальные мышцы, и зрачок расширяется, пропуская в глаз больше света. цинновы связки (ресничные пояски). Отростки ресничного тела, направляются к капсуле хрусталика. При расслабленном состоянии гладкой мускулатуры ресничного тела оказывают максимальное растягивающее действие на капсулу хрусталика, в результате чего он максимально уплощен, а преломляющая его способность минимальна (это имеет место в момент рассматривания предметов, находящихся на большом удалении от глаз); в условиях сокращенного состояния гладкой мускулатуры ресничного тела имеет место обратная картина (при рассматривании близко расположенных от глаз предметов)передняя и задняя камеры глаза соответственно, заполнены водянистой влагой.
Движения глаз. Для полного использования возможностей зрения наряду с системой интерпретации зрительных сигналов, поступающих от глаз, практически так же важны системы мозгового контроля движений глаз по направлению к рассматриваемому объекту. Мышцы, управляющие движениями глаз. Движения глаз осуществляют три пары мышц: (1) медиальные и латеральные прямые, (2) верхние и нижние прямые, (3) верхние и нижние косые. При сокращении медиальных и латеральных прямых мышц глаза движутся из стороны в сторону. Сокращение верхних и нижних прямых мышц вызывает движение глаз вверх или вниз. Основной функцией косых мышц является вращение глазных яблок для удержания зрительных полей в вертикальном положении. Нервные пути, контролирующие движения глаз. На рисунке показаны также ядра III, IV и VI пар черепных нервов в стволе мозга и их связи с периферическими нервами, иннервирующими глазные мышцы. Показаны также взаимосвязи между ядрами мозгового ствола посредством медиального продольного пучка. Каждый из трех наборов мышц для каждого глаза иннервируется реципрокно так, что одна мышца из пары расслабляется, если другая сокращается. Фиксационные движения глаз Вероятно, наиболее важными движениями глаз являются те, которые «фиксируют» глаз в определенной части поля зрения. Фиксационные движения контролируют два нервных механизма. Первый из них позволяет осуществить произвольное движение глаз для обнаружения объекта, на котором человек хочет зафиксировать взгляд; это механизм произвольной фиксации. Второй — непроизвольный механизм для надежного удержания взора на объекте после его обнаружения; его называют механизмом непроизвольной фиксации. Движения произвольной фиксации регулируются корковым полем, расположенным билатерально в премоторных корковых областях лобных долей, как показано на рисунке. Двусторонняя дисфункция или разрушение этих областей делает трудным или почти невозможным для человека «оторвать» глаза от одной точки фиксации и перевести их на другую точку. Обычно для этого человеку нужно зажмуриться или закрыть глаза рукой на короткое время, и только после этого направление взгляда можно изменить. Наоборот, фиксационный механизм, который «приковывает» глаза к объекту внимания после его обнаружения, регулируется вторичными зрительными областями затылочной коры, расположенными в основном впереди первичной зрительной коры. При двустороннем разрушении этой области фиксации у животного ему трудно или совсем невозможно удерживать глаза на данной точке фиксации. Задние «непроизвольные» глазные поля затылочной коры автоматически «приковывают» глаза к данной точке зрительного поля и предупреждают таким образом движение изображения по сетчатке. Для прекращения этой фиксации взора нужны произвольные импульсы, передаваемые из «произвольных» глазных полей лобной коры.
Последовательные образы) Зрительные ощущения возникают при воздействии электромагнитных волн на зрительный рецептор – сетчатку глаза. В центре сетчатки расположены особые нервные клетки – колбочки, обеспечивающие ощущение цвета. На периферических участках сетчатки находится иной вид нервных клеток – палочки, характеризующиеся высокой чувствительностью к переходам яркости. zrenieКолбочки представляют собой аппарат дневного зрения, палочки - ночного (сумеречного) зрения. Световые волны, отраженные предметом, преломляются, проходя через хрусталик глаза, и формируют на сетчатке изображение – образ. Предметность зрительного ощущения отражена в хорошо известном нам всем выражении: лучше один раз увидеть, чем сто раз услышать. Глаз человека различает около полумиллиона цветов и тонов. Если бы воздух был совершенно чист, пламя свечи было бы видно на расстоянии 27 км. Водяные пары и пыль ухудшают видимость, поэтому костер виден человеку лишь за 6-8 км, зажженная спичка – за 1,5 км. Мы способны также зафиксировать вспышку света продолжительностью 0,0003 с. Все эти данные свидетельствуют о том, что глаз человека обладает высокой степенью чувствительности. Различные цветовые ощущения вызываются электромагнитными волнами разной длины. Наш глаз реагирует на ту часть электромагнитного спектра, которая находится в диапазоне от 300 до 800 нанометров (нм). Смешение всех электромагнитных волн дает ощущение белого цвета. Цвета, которые способен различать человек, делятся на ахроматические (белый, черный, серый) и хроматические (все остальные). Ахроматические цвета отличаются друг от друга только светлотой, зависящей от того, какую часть падающего света отражает предмет, т.е. от его коэффициента отражения. Чем больше коэффициент, тем светлее цвет. Так, черная бумага отражает лишь 4 % падающего света, тогда как для белой бумаги (в зависимости от ее сорта) этот показатель колеблется в пределах 65-85 %. Хроматические цвета обладают тремя основными свойствами: светлотой, цветовым тоном и насыщенностью. Цветовой тон, как уже говорилось, определяется длиной электромагнитной волны. Насыщенностью называется степень выраженности данного цветового тона. Она определяется тем, насколько длина волн, обусловливающая цвет данного объекта, преобладает в световом потоке. Следует отметить, что чувствительность глаза зависит не только от возрастных и индивидуальных особенностей человека, но и от условий его жизнедеятельности.
Инерция зрения (персистенция, от лат. persisto — постоянно пребывать, оставаться) — особенность зрительного восприятия дискретных последовательных событий, которые кажутся непрерывными. Так, например, когда крутят горящий факел, глаз видит огненный круг вместо нескольких положений одного и того же горящего факела. Таким образом, персистенция — это способность глаза соединять быстро сменяющиеся изображения в одно — неподвижное. Именно на этом принципе устроен кинематограф, поскольку любое изображение (в кино или на экране монитора) представляет собой множество быстро сменяющихся изображений. Длительность эффекта персистенции зависит от интенсивности света, отражаемого или излучаемого предметом, а также цвета. Зрительное ощущение появляется не мгновенно. Прежде чем возникнет ощущение, в зрительной системе должны произойти многократные преобразования и передача сигналов. Время «инерции зрения», не обходимое для возникновения зрительного ощущения, в среднем равно 0,03–0,1 с. Следует отметить, что это ощущение также исчезает не сразу после того, как прекратилось раздражение – оно держится ещё некоторое время. Если в темноте водить по воздуху горящей спичкой, то мы увидим светящуюся линию, так как быстро следующие одно за другим световые раздражения сливаются в непрерывное ощущение. Минимальная частота следования световых стимулов (например, вспышек света), при которой происходит объединение отдельных ощущений, называется критической частотой слития мельканий. При средних освещённостях эта частота равна 10–15 вспышкам в 1 с. На этом свойстве зрения основаны кино и телевидение: мы не видим промежутков между отдельными кадрами (24 кадра в 1 с в кино), так как зрительное ощущение от одного кадра ещё длится до появления следующего. Это и обеспечивает иллюзию непрерывности изображения и его движения. Ощущения, продолжающиеся после прекращения раздражения, называются последовательными образами. Если посмотреть на включённую лампу и закрыть глаза, то она видна ещё в течение некоторого времени. Если же после фиксации взгляда на освещённом предмете перевести взгляд на светлый фон, то некоторое время можно видеть негативное изображение этого предмета, т.е. светлые его части – тёмными, а тёмные – светлыми (отрицательный последовательный образ). Это объясняется тем, что возбуждение от освещённого объекта локально тормозит (адаптирует) определённые участки сетчатки; если после этого перевести взор на равномерно освещённый экран, то его свет сильнее возбудит те участки, которые не были возбуждены ранее.
Бинокулярное зрение. Бинокулярное зрение. Человек обладает бинокулярным зрением, т.е.зрением двумя глазами. Такое зрение имеет преимущество перед моноокулярным зрением (одним глазом) в восприятии глубины пространства, особенно на близких расстояниях (менее100 м). Четкость такого восприятия (глазомер) обеспечивается хорошей координацией движения обоих глаз, которые должны точно наводиться на рассматриваемый объект. В этом случае его изображение попадает на идентичные точки сетчатки (одинаково удаленные от центра сетчатки) и человек видит одно изображение. Четкий поворот глазных яблок зависит от работы наружных мышц глаза — его глазодвигательного аппарата (четырех прямых и двух косых мышц), другими словами, от мышечного баланса глаза. Однако идеальный мышечный баланс глаза или ортофория имеется лишь у 40% людей. Его нарушение возможно в результате утомления, действия алкоголя и пр., а также как следствие дисбаланса мышц, что приводит к нечеткости и раздвоению изображения (гетерофория). При небольших нарушениях сбалансированности мышечных усилий наблюдается небольшое скрытое (или физиологическое) косоглазие, которое в бодром состоянии человек компенсирует волевой регуляцией, а при значительных — явное косоглазие. При взгляде на какой-либо предмет у человека с нормальным зрением не возникает ощущения двух предметов, хотя и имеется два изображения на двух сетчатках. Изображения всех предметов попадают на так называемые корреспондирующие, или соответственные, участки двух сетчаток, и в восприятии человека эти два изображения сливаются в одно. Надавите слегка на один глаз сбоку: немедленно начнет двоиться в глазах, потому что нарушилось соответствие сетчаток. Если же смотреть на близкий предмет, конвергируя глаза, то изображение какой-либо более отдаленной точки попадает на неидентичные (диспаратные) точки двух сетчаток. Диспарация играет большую роль в оценке расстояния и, следовательно, в видении глубины рельефа. Для получения одного изображения в обоих глазах линии зрения сходятся в одной точке. Поэтому в зависимости от расположения предмета эти линии при взгляде на далекие предметы расходятся, а на близкие — сходятся. Такое приспособление (конвергенция) осуществляется произвольными мышцами глазного яблока (прямыми и косыми). Это приводит к получению единого стереоскопического изображения, к рельефному видению мира. Бинокулярное зрение дает возможность также определять взаимное расположение предметов в пространстве, зрительно судить об их удаленности. При смотрении одним глазом, т.е. при монокулярном зрении, также можно судить об отдаленности предметов, но менее точно, чем при бинокулярном зрении.
Глазодвигательный аппарат имеет важное значение в восприятии скорости движения, которую человек оценивает либо по скорости перемещения изображения по сетчатке неподвижного глаза, либо по скорости движения наружных мышц глаза при следящих движениях глаза. Изображение, которое видит человек двумя глазами, прежде всего определяется его ведущим глазом. Ведущий глаз обладает более высокой остротой зрения, мгновенным и особенно ярким восприятием цвета, более обширным полем зрения, лучшим ощущением глубины пространства. При прицеливании воспринимается лишь то, что входит в поле зрения этого глаза. В целом, восприятие объекта в большей мере обеспечивается ведущим глазом, а восприятие окружающего фона — неведущим глазом. При бинокулярном зрении предмет виден одиночным лишь в том случае, если его изображение возникает на идентичных участках обеих сетчаток. Идентичными точками сетчатки двух глаз называют области центральных ямок и все точки, расположенные от нее на одинаковом расстоянии и в одном и том же направлении Остальные, несовпадающие точки сетчаток называют неидентичными. При попадании лучей на неидентичные точки изображение предмета оказывается раздвоенным. Чтобы лучи от предмета попали на идентичные точки, необходимо сведение осей зрения на предмете. Сведение осей зрения на предмете называют конвергенцией. Конвергенция осуществляется путем вращения глазных яблок, которое происходит при сокращении шести наружных глазных мышц. Все мышцы, кроме нижней косой, прикрепляются к фиброзному кольцу, расположенному вокруг отверстия, из которого выходит зрительный нерв. Наружная прямая поворачивает глазное яблоко наружу, внутренняя — внутрь, верхняя прямая — вверх и одновременно наружу, нижняя прямая — вниз и внутрь. Верхняя косая мышца поворачивает глазное яблоко вниз и наружу, нижняя косая — вверх и наружу. Зрение двумя глазами значительно облегчает восприятие пространства и глубины расположения предмета. Оценка расстояния до предмета может быть произведена и одним глазом. При рассматривании ближних предметов напрягается ресничная мышца; чем ближе предмет, тем сильнее ее напряжение. Степень напряжения мышцы дает представление о расстоянии до предмета. Способствует оценке расстояний также и то, что близкие предметы дают большее изображение на сетчатке, чем далекие. Однако наиболее точная оценка расстояния до тех или иных предметов пространства осуществляется при зрении двумя глазами. Чем ближе расположен предмет, тем сильнее должны быть повернуты глазные яблоки для сведения на нем осей зрения. Степень сокращения соответствующих мышц дает представление об удаленности предмета от глаза. Зрение двумя глазами способствует определению формы предмета, его объема. При рассматривании предмета одна часть лучей, идущих от него, попадает на идентичные участки сетчаток, а другая — на неидентичные, но смещенные относительно друг друга на очень небольшое расстояние. Поэтому при рассматривании предмета поочередно то одним, то другим глазом мы видим его неодинаково: часть деталей видима и одним и другим глазом, часть только правым или только левым. Это дает представление об объемности предмета.
1. ЖАЛОБЫ. Обследование пациента начинают с выяснения жалоб. Некоторые жалобы настолько характерны для того или иного заболевания, что они позволяют поставить предположительный диагноз. Например, покраснение краев век и зуд в этой области могут свидетельствовать о блефарите. Ощущение засоренности глаз, чувство песка, тяжесть век укажут на хронический конъюнктивит. Склеивание век по утрам, покраснение глаз без заметного снижения зрения будут указывать на наличие острого конъюнктивита. Жалобы могут ориентировать врача относительно локализации процесса. Светобоязнь, блефароспазм, слезотечение характерны для поражения роговой оболочки или сосудистого тракта. Жалоба на внезапную безболезненно наступившую слепоту свидетельствует о поражении световоспринимающей части глаза. Однако в том и другом случае жалоба сама по себе не определяет характера заболевания. Следует помнить, что могут быть жалобы, свойственные как ряду глазных заболеваний, так и многим общим заболеваниям организма. Затуманивание зрения, например, отметят больные с катарактой, глаукомой, поражением сетчатки и зрительного нерва, гипертонической болезнью, диабетом, опухолью мозга и другими общими заболеваниями. Лишь целенаправленный расспрос в таких случаях поможет врачу правильно ориентироваться.
2. ОФТАЛЬМОЛОГИЧЕСКИЙ АНАМНЕЗ. При выяснении анамнеза весьма важно обратить внимание на начало заболевания. При многих хронически протекающих процессах больные указывают как начало заболевания тот момент, когда они заметили те или иные расстройства зрения. Путем тщательного опроса нужно постараться выявить, не было ли ранее каких-либо симптомов. Например, при закрытоугольной, хронически протекающей глаукоме до заметного падения зрительных функций могут периодически появляться затуманивания, радужные круги перед глазами, головные боли. Не менее важным является вопрос о характере начала заболевания - проявилось ли оно остро, бурно или развивалось исподволь, когда проявилось утром, днем, зимой или летом, не предшествовало ли началу заболевания какое-либо химическое, термическое или физическое воздействие (так, катаракта может развиваться через длительное время после контузии, после рентгеновского облучения, хронического отравления тринитротолуолом и т. д.). Выяснив характер начала заболевания, надо установить особенности его течения, возможную связь с общими заболеваниями. При опросе больного обращают внимание также на условия его быта: образ жизни, питание, распорядок дня, режим сна и т. д. Неблагоприятные условия могут явиться причиной заболевания любого органа, в том числе и глаза.
3. ИССЛЕДОВАНИЕ ЗРИТЕЛЬНЫХ ФУНКЦИЙ. 3.1. ЦЕНТРАЛЬНОЕ ЗРЕНИЕ. 3.1.1. ИССЛЕДОВАНИЕ ОСТРОТЫ ЗРЕНИЯ. Для исследования остроты зрения применяются таблицы, содержащие несколько рядов специально подобранных знаков, которые называются оптотипами. В качестве оптотипов используются буквы, цифры, крючки, полосы, рисунки и т. п. Еще Снеллен в 1862 г. предложил вычерчивать оптотипы таким образом, чтобы весь знак был виден под углом зрения 5 мин. а его детали под углом 1 мин. Под деталью знака понимается как толщина линий, составляющих оптотип, так и промежуток между этими линиями. Все линии, составляющие оптотип Е. и промежутки между ними ровно в 5 раз меньше размеров самой буквы. С целью исключить элемент угадывания буквы, сделать все знаки в таблице идентичными по узнаваемости и одинаково удобными для исследования грамотных и неграмотных людей разных национальностей Ландольт предложил использовать в качестве оптотипа незамкнутые кольца разной величины. С заданного расстояния весь оптотип также виден под углом зрения 5 мин, а толщина кольца, равная величине разрыва, под углом в 1 мин. Исследуемый должен определить, с какой стороны кольца расположен разрыв. При этом остроту зрения высчитывают по формуле Снеллена: VISUS=d/D, где d- расстояние, с которого проводится исследование,aD- расстояние, с которого нормальный глаз различает знаки этого ряда (проставлено в каждом ряду слева от оптотипов). Например, исследуемый с расстояния 5 м читает 1-й ряд. Нормальный глаз различает знаки этого ряда с 50 м. Следовательно, VISUS= 5M/50M= 0,1. Изменение величины оптотипов выполнено в арифметической' прогрессии в десятичной системе так, что при исследовании с 5 м чтение каждой последующей строки сверху вниз свидетельствует об увеличении остроты зрения на одну десятую: верхняя строка - 0,1, вторая - 0,2 и т. д. до 10-й строки, которая соответствует единице. Этот принцип нарушен только в двух последних строках, так как чтение 11-й строки соответствует остроте зрения 1,5, а 12-й - 2 единицам. Острота зрения, соответствующая чтению данной строки с расстояния 5 м, проставлена в таблицах в конце каждого рада, т. е. справа от оптотипов. Если исследование проводится с меньшего расстояния, то пользуясь формулой Снеллена, нетрудно рассчитать остроту зрения для каждого ряда таблицы. Для исследования остроты зрения у детей дошкольного возраста используются таблицы, где оптотипами служат рисунки. Если острота зрения исследуемого меньше 0,1. то определяют расстояние, с которого он различает оптотипы 1-го ряда. Для этого исследуемого постепенно подводят к таблице, или, что более удобно, приближают к нему оптотипы 1-го ряда, пользуясь разрезными таблицами или специальными оптотипами Б. Л. Поляка. С меньшей степенью точности можно определять низкую остроту зрения, пользуясь вместо оптотипов 1-го ряда демонстрацией пальцев рук на темном фоне, так как толщина пальцев примерно равна ширине линий оптотипов первого ряда таблицы и человек с нормальной остротой зрения может их различать с расстояния 50 м. Остроту зрения при этом вычисляют по общей формуле. Например, если исследуемый видит оптотипы 1-го ряда или считает количество демонстрируемых пальцев с расстояния 3 м, то его VISUS= З м / 50м = 0,06. Если острота зрения исследуемого ниже 0,005, то для ее характеристики указывают, с какого расстояния он считает пальцы, например: VISUS= счет пальцев на 10 см. Когда же зрение так мало, что глаз не различает предметов, а воспринимает только свет, остроту зрения считают равной светоощущению: VISUS= 1/∞ (единица, деленная на бесконечность, является математическим выражением бесконечно малой величины). Определение светоощущения проводят, с помощью офтальмоскопа. Лампу устанавливают слева и сзади от больного и ее свет с помощью вогнутого зеркала направляют на исследуемый глаз с разных сторон. Если исследуемый видит свет и правильно определяет его направление, то остроту зрения оценивают равной светоощущению с правильной светопроекцией и обозначают VISUS=1/∞proectialuciscerta(или сокращенно - 1 / ∞p.I.e.) Правильная проекция света свидетельствует о нормальной функции периферических отделов сетчатки и является важным критерием при определении показаний к операции при помутнении оптических сред глаза. Если глаз исследуемого неправильно определяет проекцию света хотя бы с одной стороны, то такая острота зрения оценивается как светоощущение с неправильной светопроекцией и обозначается VISUS=l/∞proectialucisincerta(или сокращенно - 1 / ∞p. 1.inc.) Наконец, если исследуемый не ощущает даже света, то его острота зрения равна нулю (VISUS=0). Для правильной оценки изменений функционального состояния глаза во время лечения, при экспертизе трудоспособности, освидетельствовании военнообязанных, профессиональном отборе и т. п. необходима стандартная методика исследования остроты зрения для получения соизмеримых результатов. Для этого помещение, где больные ожидают приема, и глазной кабинет должны быть хорошо освещены, так как в период ожидания глаза адаптируются к имеющемуся уровню освещенности и тем самым готовятся к исследованию. Таблицы для определения остроты зрения должны быть также хорошо, равномерно и всегда одинаково освещены. Для этого их помещают в специальный осветитель с зеркальными стенками. Для освещения применяют электрическую лампу 40 Вт, закрытую со стороны больного щитком. Нижний край осветителя должен находиться на уровне 1.2 м от пола на расстоянии 5 м от больного. Исследование проводят для каждого глаза в отдельности. Результат для правого глаза записывается VISUSOD= , для левогоVISUSOS= Для удобства запоминания принято первым проводить исследование правого глаза. Во время исследования оба глаза должны быть открыты. Глаз, который в данный момент не исследуется, заслоняют щитком из белого, непрозрачного, легко дезинфицируемого материала. Иногда разрешается прикрыть глаз ладонью, но без надавливания, так как после надавливания на глазное яблоко острота зрения снижается. Не разрешается во время исследования прищуривать глаза. Оптотипы на таблицах показывают указкой, длительность экспозиции каждого знака не более 2-3 с. Остроту зрения оценивают по тому ряду, где были правильно названы все знаки. Допускается неправильное распознавание одного знака в рядах, соответствующих остроте зрения 0,3-0,6, и двух знаков в рядах 0,7-1,0, но тогда после записи остроты зрения в скобках указывают, что она неполная. 3.7.2. ИССЛЕДОВАНИЕ ЦВЕТООЩУЩЕНИЯ. Определение цветового зрения включает исследование уровня цветочувствительной функции, выявление цветовых расстройств и дифференцирование их по формам и степеням. Эти исследования могут быть произведены при помощи испытательных таблиц или спектральных приборов типа аномалоскопа. Наибольшим распространением пользуются полихроматические таблицы Рабкина. Основная группа таблиц предназначена для дифференциальной диагностики форм и степеней врожденных расстройств цветового зрения в исследовательской и клинической практике и для отличия их от приобретенных; контрольная группа таблиц - для уточнения диагноза в сложных случаях. В таблицах среди фоновых кружочков одного цвета имеются кружочки одинаковой яркости, но другого цвета, составляющие для нормально видящего какую-либо цифру или фигуру. Лица с расстройством цветового зрения не отличают цвет этих кружочков от цвета кружочков фона и поэтому не могут различить предъявляемых им фигурных или цифровых изображений. Исследование цветового зрения с помощью полихроматических таблиц необходимо производить при хорошем естественном освещении рассеянным светом или при искусственном освещении лампами дневного 1 света. Рекомендуемая величина освещенности 300-500 лк. Каждую таблицу поочередно показывают в течение 5 сек. с расстояния 0,5-1 м. располагая их в строго вертикальной плоскости. Первые два теста правильно читают лица как с нормальным, так и расстроенным цветоощущением. Они служат для контроля и объяснения исследуемому его задачи. Показания по каждому тесту регистрируют и согласуют с указаниями, имеющимися в приложении к таблицам. Анализ полученных данных позволяет определить диагноз цветовой слепоты или вид и степень цветоаномалии. В соответствии с трехкомпонентной теорией цветового зрения нормальное ощущение цвета называется нормальной трихромазией. Расстройства цветоощущения могут проявляться аномальной трихромазией, дихромазиями или монохромазией. 3.2. ПЕРЕФЕРИЧЕСКОЕ ЗРЕНИЕ. 3.2.1. ОРИЕНТИРОВОЧНАЯ ПРОБА. Ориентировочная проба позволяет без использования приборов выявить грубые нарушения в полях зрения. Для ее выполнения врач усаживается напротив пациента и просит его закрыть один глаз. Вторым глазом пациент фиксирует переносицу врача (точка фиксации). Используя в качестве тест - объекта свои пальцы, врач ориентировочно определяет границы полей зрения по основным меридианам. Сравнивая результаты на правом и левом глазу, можно обнаружить грубые выпадения в полях зрения. 3.2.2. НОСОВАЯ ПРОБА. Исследование проводится с помощью простого приспособления, которое легко изготовить самим. Необходимо взять палочку длиной 15-20 см. в торец которой прикрепить (приклеить) шарик белого цвета диаметром 5 мм. например, бусинку. Можно воспользоваться также стеклянной глазной палочкой, на конец которой туго навернуть ватку в виде шарика. Исследование проводится следующим образом: надо усадить исследуемого напротив себя на расстояние 40-50 см. и закрыть один глаз его экраном, например листом белой бумаги. Вторым глазом исследуемый должен смотреть прямо перед собой. Затем необходимо медленно провести шарик по спинке носа, начиная, например, с кончика носа и до корня носа. Исследуемый должен сказать видит ли он объект на всем протяжении носа, или же объект пропадает на том или ином участке. Если шарик виден на всех участках спинки носа, то можно сделать заключение, что ноле зрения с носовой стороны не сужено и находится в пределах относительных границ нормы. В том случае, когда больной не видит показываемого объекта на всем протяжении спинки носа, или он исчезает в отдельных его участках можно сделать вывод о сужении поля зрения с носовой стороны. В журнале регистрации профилактического осмотра необходимо сделать схематическую запись. Приведем возможные варианты сужений носовой половины ноля зрения и их схематическую запись. 3.2.3. ПЕРИМЕТРИЯ. Периметрия - наиболее распространенный, простой и достаточно совершенный метод исследования периферического зрения. Основным отличием и достоинством периметрии является проекция поля зрения не на плоскость, а на вогнутую сферическую поверхность, концентричную сетчатой оболочке глаза. Благодаря этому исключается искажение границ поля зрения, неизбежное при исследовании на плоскости. Перемещение объекта на определенное число градусов по дуге дает равные отрезки, а на плоскости их величина неравномерно увеличивается от центра к периферии. Основной деталью наиболее распространенного и в настоящее время настольного периметра Форстера является дуга шириной 50 мм и радиусом кривизны 333 мм. В середине этой дуги расположен белый неподвижный объект, служащий для исследуемого глаза точкой фиксации. Центр дуги соединен с подставкой осью, вокруг которой дуга свободно вращается, что позволяет придать ей любой наклон для исследования поля зрения в разных меридианах. Меридиан исследования определяется по диску, разделенному на градусы и расположенному позади дуги. Внутренняя поверхность дуги покрыта черной матовой краской, а на наружной с интервалами 5° нанесены деления от О до 90°. В центре кривизны дуги расположена подставка для головы, где по обе стороны от центрального стержня имеются упоры для подбородка, позволяющие ставить исследуемый глаз в центр дуги. Для исследования используют белые или цветные объекты, укрепленные на длинных стержнях черного цвета, хорошо сливающихся с фоном дуги периметра. Достоинствами периметра Форстера являются простота в обращении и дешевизна прибора, а недостатком - непостоянство освещения дуги и объектов, контроль за фиксацией глаза. На нем трудно обнаружить небольшие дефекты поля зрения (скотомы). Значительно больший объем информации о периферическом зрении получается при исследовании с помощью проекционных периметров, основанных на принципе проекции светового объекта на дугу или на внутреннюю поверхность полусферы (сферопериметр). Набор диафрагм и светофильтров, вмонтированных на пути светового потока, позволяет быстро и главное дозировано изменять величину, яркость и цветность объектов. Это дает возможность проводить не только качественную, но и количественную (квантитативную) периметрию. В сферопериметре, кроме того, можно дозировано менять яркость освещения фона и исследовать дневное (фотопическое), сумеречное (мезопическое) и ночное (скотопическое) поле зрения. Устройство для последовательной регистрации результатов сокращает время, необходимое для исследования. У лежачих больных поле зрения исследуют при помощи портативного складного периметра. Методика периметрии. Поле зрения исследуют поочередно для каждого глаза. Второй глаз выключают с помощью легкой повязки так, чтобы она не ограничивала поле зрения исследуемого глаза. Больного в удобной позе усаживают у периметра спиной к свету. Исследование на проекционных периметрах проводят в затемненной комнате. Регулируя высоту подголовника, устанавливают исследуемый глаз в центре кривизны дуги периметра против фиксационной точки. Определение границ поля зрения на белый цвет осуществляется объектами диаметром 3 мм, а измерение дефектов внутри поля зрения - объектами в 1 мм. При плохом зрении можно увеличить величину и яркость объектов. Периметрию на цвета проводят объектами диаметром 5 мм. Перемещая объект по дуге периметра от периферии к центру, отмечают по градусной шкале дуги момент, когда исследуемый констатирует появление объекта. При этом необходимо следить, чтобы исследуемый не двигал глазом и постоянно фиксировал неподвижную точку в центре дуги периметра. Состав и функции оптического аппарата глаза. Зрительный анализатор (или зрительная сенсорная система) – важнейший из органов чувств человека и большинства высших позвоночных животных. Он дает более 90% информации, идущей к мозгу от всех рецепторов. Благодаря опережающему эволюционному развитию именно зрительных механизмов мозг хищных животных и приматов претерпел резкие изменения и достиг значительного совершенства. Зрительное восприятие – многозвеньевой процесс, начинающийся с проекции изображения на сетчатку глаза и возбуждения фоторецепторов и заканчивающийся принятием высшими отделами зрительного анализатора, локализованными в коре мозга, решения о наличии в поле зрения того или иного зрительного образа. Структуры зрительного анализатора: Глазное яблоко. Вспомогательный аппарат. Строение глазного яблока: Ядро глазного яблока окружают три оболочки: наружная, средняя и внутренняя. Наружная — очень плотная фиброзная оболочка глазного яблока (tunica fibrosa bulbi), к которой прикрепляются наружные мышцы глазного яблока, выполняет защитную функцию и благодаря тургору обусловливает форму глаза. Она состоит из передней прозрачной части — роговицы, и задней непрозрачной части белесоватого цвета — склеры. Средняя, или сосудистая, оболочка глазного яблока играет важную роль в обменных процессах, обеспечивая питание глаза и выведение продуктов обмена. Она богата кровеносными сосудами и пигментом (богатые пигментом клетки хориоидеи препятствуют проникновению света через склеру, устраняя светорассеяние). Она образована радужкой, ресничным телом и собственно сосудистой оболочкой. В центре радужки имеется круглое отверстие — зрачок, через которое лучи света проникают внутрь глазного яблока и достигают сетчатки (величина зрачка изменяется в результат взаимодействия гладких мышечных волокон — сфинктера и дилататора, заключённых в радужке и иннервируемых парасимпатическим и симпатическим нервами). Радужка содержит различное количество пигмента, от которого зависит её окраска — «цвет глаз». Внутренняя, или сетчатая, оболочка глазного яблока (tunica interna bulbi), — сетчатка — рецепторная часть зрительного анализатора, здесь происходит непосредственное восприятие света, биохимические превращения зрительных пигментов, изменение электрических свойств нейронов и передача информации в центральную нервную систему. Сетчатка состоит из 10 слоев: Пигментный; Фотосенсорный; На
|
|||||||||
Последнее изменение этой страницы: 2021-05-12; просмотров: 129; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.55.138 (0.023 с.) |