Аэробный гликолиз: стадия, ферменты и коферменты, биоэнергетика значение для организма. Челночные механизмы транспорта атома водорода в митохондрии и их роль в поддержании аэробного гликолиза. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Аэробный гликолиз: стадия, ферменты и коферменты, биоэнергетика значение для организма. Челночные механизмы транспорта атома водорода в митохондрии и их роль в поддержании аэробного гликолиза.



Гликолиз – это ферментативный распад глюкозы в аэробных условиях до двух молекул пировиноградной кислоты (аэробный гликолиз), а в анаэробных условиях – до двух молекул молочной кислоты (анаэробный гликолиз). Анаэробный гликолиз происходит во всех тканях. Все ферменты, катализирующие реакции этого процесса, локализованы в цитозоле клетки. Условно можно разделить гликолиз на две стадии.

I Первая стадия: Подготовительный этап, в ходе которого глюкоза фосфорилируется и расщепляется на две молекулы фосфотриоз. Эта серия реакций протекает с использованием 2 молекул АТФ.

1)Первой ферментативной реакцией гликолиза является фосфорилирование, т.е. перенос остатка ортофосфата на глюкозу за счет АТФ. Реакция катализируется ферментом гексокиназой:

Биологическая роль реакции фосфорилирования глюкозы заключается в том, что глюкозо-6-фосфат, в отличие от свободной глюкозы, не может проникать через плазматическую мембрану обратно в кровь.

2) Второй реакцией гликолиза является превращение глюкозо-6-фос-фата под действием фермента глюкозо-6-фосфатизомеразы во фруктозо-6-фосфат:

3 ) Третья реакция катализируется ферментом фосфофруктокиназой; образовавшийся фруктозо-6-фосфат вновь фосфорилируется за счет второй молекулы АТФ:

4) Четвертую реакцию гликолиза катализирует фермент альдолаза. Под влиянием этого фермента фруктозо-1,6-бисфосфат расщепляется на две фосфотриозы:

5) Пятая реакция это реакция изомеризации триозофосфатов.Катализируется ферментом триозофосфатизомеразой:

Образованием глицеральдегид-3-фосфата как бы завершается первая стадия гликолиза.

 

II Вторая стадия: Этап, сопряжённый с синтезом АТФ. В результате этой серии реакций фосфотриозы превращаются в пируват. Энергия, высвобождающаяся на этом этапе, используется для синтеза АТФ.

6) В результате шестой реакции глицеральдегид-3-фосфат в присутствии ферментаглицеральдегидфосфатдегидрогеназы, кофермента НАД и неорганического фосфата подвергается своеобразному окислению с образованием 1,3-бисфосфоглицериновой кислоты и восстановленной формы НАД (НАДН).

1,3-Бисфосфоглицерат представляет собой высокоэнергетическое соединение

7) Седьмая реакция катализируется фосфоглицераткиназой, при этом происходит передача богатого энергией фосфатного остатка на АДФ с образованием АТФ и 3-фосфоглицерата:

8) Восьмая реакция сопровождается внутримолекулярным переносом оставшейся фосфатной группы, и 3-фосфоглицерат превращается в 2-фосфоглицерат.

9 ) Девятая реакция катализируется ферментоменолазой, при этом 2-фосфоглицерат в результате отщепления молекулы воды переходит в фосфоенолпировиноградную кислоту (фосфоенолпируват), а фосфатная связь в положении 2 становится высокоэргической:

10) Десятая реакция характеризуется разрывом высокоэргической связи и переносом фосфатного остатка от фосфоенолпирувата на АДФ. Катализируется ферментом пируваткиназой:

При подсчёте энергетического баланса гликолиза следует учитывать, что каждая из реакций второй стадии этого метаболического пути повторяется дважды. Таким образом, в первой стадии было затрачено 2 молекулы АТФ, а во второй стадии путём субстратного фосфорилирования образовалось 2х2 = 4 молекулы АТФ; следовательно при окислении одной молекулы глюкозы в клетке накапливается 2 молекулы АТФ.

НАДН, образующийся в цитоплазме в, не способен проникать через митохондриальную мембрану. Перенос водорода с цитоплазматического НАДН в митохондрии происходит при помощи малат-аспартатного челночного механизма. Цитоплазматический НАДН восстанавливает оксалоацетат в малат, который проникает в митохондрию, где окисляется, восстанавливая митохондриальный НАД; в цитоплазму оксалоацетат возвращается в виде аспартата.

31.Пути образования и использования пировиноградной кислоты.

Простейшим представителем α-кетонокислот является пировиноградная кислота СН3—СО—СООН.

Пути образования:

1)    Молочная кислота поступает в кровь и переносится из мышц в печень, где она окисляется собразованием пировиноградной кислоты и восстановленного НАД. Часть этой пировиноградной кислоты направляется на обычный аэробный путь через цикл Кребса и подвергается окислению, в результате чего образуется АТФ. В сердечной мышце при тяжелой нагрузке молочная кислота тоже может превращаться в пировиноградную, окисляясь за счет НАД, и этот процесс служит здесь дополнительным источником энергии.

2) ПВК - конечный продукт метаболизма глюкозы в процессе гликолиза.

C6H12O6       2C3H4O3

 

3)   Пировиноградная кислота может быть получена: нагреванием (пиролизом) винной кислоты

4) Элиминирование-гидратация. Примером служит получение пировиноградной кислоты из серина

5) Окислительное дезаминирование аланина, приводит к образованию пирувата:

6) Аланин и а-кетоглютаровая кислота подвергаются трансаминированию с образованием пировиноградной и глютаминовой кислот:

7)  Пировиноградная кислота образуется при спиртовом брожении сахаров.

 

Пути использования:

· Пировиноградная кислота в анаэробных условиях восстанавливается до молочной кислоты.

· Превращение пирувата в ацетил-КоА происходит при участии набора ферментов, структурно объединённых в пируватдегидрогеназный комплекс (ПДК). Ацетильный остаток - ацетил- КоА далее окисляется в цикле лимонной кислоты до СО2 и Н2О

· Может быть превращена обратно в глюкозу в процессе глюконеогенеза

· В клетках животных и растений пировиноградная кислота может превращаться в аминокислоту аланин



Поделиться:


Последнее изменение этой страницы: 2021-05-27; просмотров: 107; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.123.120 (0.006 с.)