Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Модель сопряженного транспорта.Содержание книги Поиск на нашем сайте
Активный транспорт натрия из клетки имеет компонент, сопряженный со входом калия в клетку. Преимущество такого насоса в том, что он экономит энергию - свойство важное для энергетического баланса клетки. В мышечной клетке в состоянии покоя 10-20 % метаболизма тратится на обеспечение активного транспорта.
Функция нервных клеток в организме состоит в получении информации, передаче ее в другие участки нервной системы, сравнение ее с информацией от других источников и, наконец, регуляции деятельности других клеток. Сигналы от нервов вызывают сокращение мышечных клеток. Когда эти два типа клеток “активны”, возникает быстрый сдвиг мембранного потенциала в положительном направлении - потенциал действия.
Потенциал действия (ПД) возникает в результате внезапного кратковременного повышения проницаемости мембраны для натрия и входа натрия в аксон. Потенциалы действия всегда возникают при деполяризации мембраны примерно до -50 мВ. Механизмы развития этой начальной деполяризации будут рассмотрены позднее. Уровень потенциала, при котором деполяризация дает начало потенциалу действия, называется порогом. При таком пороговом потенциале заряд мембраны становится нестабильным; он нарушается посредством внутреннего механизма, который ведет к реверсии полярности - быстрому нарастанию действия до пика. Это состояние автоматического прогрессирующего нарушения мембранного заряда называется возбуждением. Обычно возбуждение продолжается менее 1 мс. Оно подобно взрыву - характеризуется мощностью и быстрым прекращением. После фазы деполяризации наступает процесс восстановления заряда мембраны, присущего состоянию покоя. На пике потенциала действия проницаемость для натрия начинает падать, происходит блокировка - инактивация натриевых каналов, и примерно, через 0,5 мс после начала деполяризации повышается проницаемость для калия и калий выходит из аксона. По мере выхода калия положительный заряд с внутренней стороны меняется на отрицательный - это фаза реполяризации мембраны, представлена нисходящей областью пика ПД, приводит к восстановлению исходного мембранного потенциала. Таким образом, потенциал покоя определяется ионами калия, а потенциал действия зависит от ионов натрия.
Закон “всё или ничего”. Потенциал действия представляет собой последовательную деполяризацию и реполяризацию мембраны - постоянный для каждой клетки ауторегенеративный процесс, который включается, как только уровень деполяризации мембраны перейдет за пороговый потенциал. Клетки, в которых можно вызвать потенциалы действия, называются возбудимыми. Каждый тип клеток имеет постоянный и характерный для данного типа временной ход потенциала действия. Он практически не зависит от частоты возбуждения клетки. Поскольку форма потенциалов постоянная, говорят, что возбуждение протекает по закону “все или ничего”.
Потенциал покоя (ПП) близок к уровню разновесного потенциала для ионов калия, для которых мембрана в состоянии покоя проницаема. Если во время ПД внутренняя среда клетки становится заряженной положительно по отношению к внешнеклеточному пространству, проводимость мембраны для Na+ должна возрастать, что подтверждается экспериментально. ПД можно генерировать только при высокой концентрации натрия вне клетки. Таким образом, в основе процесса возбуждения лежит повышение проводимости мембраны для натрия, вызываемое ее деполяризацией до порогового уровня. Однако проводимость калия тоже играет роль. Повышение проводимости калия является важным фактором реполяризации мембран. Итак, ПД обусловлен циклическим процессом входа натрия в клетку и последующим выходом калия. Классические опыты, выполненные в 40-50-ых годах нашего столетия английскими учеными Ходжкиным и Хаксли на гигантском волокне аксона кальмара, определили механизм проведения электрического импульса. Длина аксона (до 1 метра) и его диаметр (до 1 мм) идеально подходили для таких опытов. Два электрода - раздражающий, по которому можно было дозировать электрическое раздражение и отводящий, позволили регистрировать все мембранные токи при каждом воздействии. Решающим моментом стало понимание того, что проницаемость мембраны для натрия и калия изменяется при изменении мембранного потенциала. Были подробно изучены механизмы открытия и закрытия этих каналов при изменении МП, показано, что ПД есть прямое следствие этих закономерностей.
Важным следствием инактивации Na+-системы является возможность рефрактерности мембраны. Если мембрана деполяризуется сразу после ПД, возбуждение не возникает ни при значении потенциала, соответствующего порогу для предыдущего ПД, ни при любой более сильной деполяризации. Такое состояние полной невозбудимости, которое в нервных клетках продолжается около 1 мс называется абсолютным рефрактерным периодом. За ним следует относительный рефрактерный период, когда путем значительной деполяризации можно вызвать ПД, хотя его амплитуда снижена по сравнению с нормой. ПД нормальной амплитуды при нормальной пороговой стимуляции можно вызвать только через несколько миллисекунд после предыдущего ПД. Возвращение к нормальной ситуации соответствует окончанию относительного рефрактерного периода. Рефрактерность обусловлена инактивацией Na+-системы во время предшествующего ПД. Хотя при реполяризации мембраны состояние инактивации проходит, такое восстановление представляет собой постепенный процесс, идущий в течение нескольких миллисекунд, в течение которых Na+-система еще не способна активизироваться или же активизируется до определенного предела.
Распространение нервного импульса определяется присутствием в мембране нейрона энергетически управляемых Na+-каналов, открывание и закрывание которых ответственно за ПД. Хотя с химической точки зрения Na+-канал еще не достаточно изучен, известно, что он является белком с молекулярным весом от 25000 до 300000. Диаметр поры этого канала составляет 0,4-0,6 нм; через такую пору могут проходить ионы Na+, связанные с молекулами воды. На поверхности канала имеется много заряженных групп, размещенных в критических точках. Эти заряды обусловливают наличие большого электрического дипольного момента, который меняется по направлению и величине в соответствии с конформационными изменениями канала, сопровождающими переход из закрытого состояния в открытое.
|
|||||||||
Последнее изменение этой страницы: 2021-04-20; просмотров: 65; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.17.166.233 (0.012 с.) |