Раздел 5. Измерение давления 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Раздел 5. Измерение давления



Тема 5.1 Основные понятия

Давление является одним из важнейших физических параметров, и его измерение необходимо как в расчетных целях, например для определения расхода, количества и тепловой энергии среды, так и в технологических целях, например для контроля и прогнозирования безопасных и эффективных гидравлических режимов напорных трубопроводов, используемых на предприятии. Рассмотрим основные понятия, связанные с давлением и его измерением.

Давлением Р называют отношение абсолютной величины нормального, то есть действующего перпендикулярно к поверхности тела, вектора силы F к площади S этой поверхности:

Р=F/S

 Или давле́ние – физическая величина, численно равная силе, действующей на единицу площади поверхности перпендикулярно этой поверхности. В данной точке давление определяется как отношение нормальной составляющей силы{\displaystyle dF_{n}}, действующей на малый элемент поверхности, к его площади.

{\displaystyle dS}Если сила равномерно распределена по площади, то указанное отношение задает точное значение давления в каждой ее точке, в противном же случае - только его среднее значение (точное значение меняется от точки к точке и определяется пределом отношения силы ΔF, приложенной на бесконечно малом участке поверхности, к его площади ΔS). В отличие от силы, величина которой может зависеть от размеров поверхности ее приложения, давление позволяет при рассмотрении взаимодействия физических тел исключить фактор площади, поскольку оно является удельной, то есть отнесенной к единице площади, силой.

Давление характеризует состояние сплошной среды и является диагональной компонентой тензора напряжений. В простейшем случае изотропной равновесной неподвижной среды не зависит от ориентации. Является интенсивной физической величиной.

Различают давления:

1) барометрическое (атмосферное) - Р атм;

2) абсолютное - Р абс;

3) избыточное - Р изб;

4) вакуум (разрежение) - Р вак

Атмосферным называют давление воздуха (атмосферы), окружающего земной шар Это давление называется ещё барометрическим давлением, поскольку оно измеряется барометром. Обозначается Рбар. Давление воздуха на уровне моря при температуре 00 С равно 760 мм рт ст. Его принято называть физической атмосферой (атм). С увеличением высоты над уровнем моря атмосферное давление уменьшается.

Абсолютное давление - это давление жидкостей или газов в закрытом сосуде. Обозначается Рабс. Оно равно сумме избыточного и атмосферного давлений.

Рабс = Ризб + Рбар

Абсолютное давление может быть больше или меньше атмосферного. Абсолютное давление измеряется относительно идеального вакуума и равно сумме относительного давления (давления по прибору) и атмосферного давления. Относительное давление (давление по прибору) измеряется относительно давления окружающего воздуха и равно разности абсолютного давления и атмосферного давления. Знак минус при этом обычно опускается. Перепад давлений – разность давлений в двух точках.

Избыточное давление - это излишек над атмосферным давлением. Другими словами, это разность абсолютного давления и давления окружающей среды. Эта разность может быть как положительной, так и отрицательной. Это давление измеряется манометром, поэтому его ещё называют манометрическим или рабочим.

Ризб = Рабс - Ратм

Если из закрытого сосуда откачать часть воздуха, то абсолютное давление внутри сосуда понизится и станет меньше, чем атмосферное. Такое давление внутри сосуда называется вакуумом. Вакуум - это недостаток давления до атмосферного.

Рвак = Ратм - Рабс

Остаточное давление определяется по формуле:

Рост = Ратм – Рвак,

где Ратм = 760 мм рт.ст.

Единицы измерения давления:

Единица измерения давления в системе СИ - Паскаль (Па).

Паскаль - это давление с силой 1 Н на площадь 1 м2, т.е. 1 Па = 1 Н/м2

Внесистемные единицы: кгс/см2; мм вод.ст.; мм рт. ст; бар, атм.

Соотношение между единицами измерения:

1 кгс/см 2 = 98066,5 Па

1 мм вод.ст. = 9,80665 Па

1 мм рт.ст. = 133,322 Па

1 бар = 10 5 Па

1 атм = 9,8* 104 Па

Тема 5.2 Классификация приборов для измерения давления

Приборы для измерения давления могут классифицироваться по следующим характеристикам:

1) виду измеряемого давления;

2) принципу действия;

3) назначению.

По принципу действия на:

· жидкостные – приборы, в которых измеряемое давление уравновешивается весом столба жидкости, а изменение уровня жидкости в сообщающихся сосудах служит мерой давления, называются жидкостными. К этой группе относятся чашечные и U-образные манометры, диффманометры и др

· деформационные – приборы, в которых измеряемое давление уравновешивается силами упругости пружины, деформация которой служит мерой давления. Благодаря простоте конструкции и удобству пользования пружинные приборы получили широкое применение в технике. К этой группе относятся разнообразные приборы, отличающиеся по виду пружин

· электрические – приборы, в которых используются изменения тех или иных электрических свойств вещества (электрического сопротивления проводников, электрической емкости, возникновение электрических зарядов на поверхности кристаллических минералов и др.) под действием измеряемого давления. К таким приборам относятся манганиновые манометры сопротивления, пьезоэлектрические манометры с применением кристаллов кварца, турмалина или сегнетовой соли, емкостные манометры, ионизационные манометры и др.

Наибольшее распространение в промышленности получили деформационные средства измерения. Остальные, в большинстве своем, нашли применение в лабораторных условиях в качестве образцовых или исследовательских.

В зависимости от назначения приборы для измерения давления делятся на следующие основные группы:

· Манометры – для измерения избыточного давления.

· Вакуумметры – для измерения вакуумметрического давления (вакуума).

· Мановакуумметры – для измерения вакуумметрического и избыточного давлений.

· Барометры – для измерения атмосферного давления.

· Баровакуумметры – для измерения абсолютного давления.

· Дифференциальные манометры – для измерения разности давлений.

· Напоромеры – микроманометры, приборы для измерения малых и избыточных давлений.

· Тягомеры – приборы для измерения малых разряжений.

· Тягонапоромеры – приборы для измерения малых и избыточных давлений.

По назначению манометры подразделяются на:

· общепромышленные, имеющие также название технических или рабочих;

· эталонные, включающие государственный первичный, рабочие и другие эталоны.

Общетехническиеманометры предназначены для измерения давления непосредственно в ходе производственных процессов в рабочих точках промышленного оборудования.

Эталонные приборы используют для хранения и передачи размера единиц давления в целях единообразия, достоверности и обеспечения высокой точности его измерений.

Тема 5.3 Жидкостные приборы

Принцип действия жидкостных манометров основан на уравновешивании измеряемой величины высотой столба рабочей жидкости. В приборах используется принцип сообщающихся сосудов, в которых уровни рабочей жидкости совпадают при равенстве давлений над ними, а при неравенстве занимают такое положение, когда избыточное давление в одном из сосудов уравновешивается гидростатическим давлением избыточного столба жидкости в другом. Большинство жидкостных манометров имеют видимый уровень рабочей жидкости, по положению которого определяется значение измеряемого давления. Эти приборы используются в лабораторной практике и в некоторых отраслях промышленности. В качестве рабочей жидкости, в зависимости от величины измеряемого избыточного давления или разряжения, а также от химических свойств измеряемого вещества, применяются: вода, спирт, ртуть, минеральные масла небольшой вязкости.

Наиболее распространенным и самым простым по устройству является U-образный прибор (рисунок 8). Он состоит из изогнутой в виде буквы U стеклянной трубки 4, примерно до половины заполненной рабочей жидкостью 3. С помощью скобок 1 трубка прикреплена к доске 2, между ветвями трубки размещена шкала 5.

Когда давления Р1 и Р2 равны, уровни жидкости в левой и правой ветвях U-образной трубки находятся против нулевой отметки шкалы. При неравенстве давлений, например, Р1>Р2, уровень в левой ветви опустится, а в правой - поднимется. Отсчет нужно производить дважды: от нуля вниз до уровня в левой ветви и от нуля вверх до уровня в правой ветви; полученные значения отсчетов (их сумма равна h) надо сложить. Это рекомендуется делать, поскольку трубки обеих ветвей прибора могут немного отличаться по диаметру. В этом случае жидкость будет опускаться (в левой) и подниматься (в правой) ветвях на неодинаковое количество делений.

Значение измеряемой величины (разность давлений Р1 и Р2) определяется по шкале прибора:

P1-P2=hpg

где р - плотность рабочей жидкости; g – ускорение силы тяжести.

 

Рисунок 8 – U-образный прибор

Для измерения давления и разности давлений используют двухтрубные манометры и дифманометры с видимым уровнем, часто называемыми U -образными. Принципиальная схема такого манометра представлена на рис. 1, а. Две вертикальные сообщающиеся стеклянные трубки 1, 2 закреплены на металлическом или деревянном основании 3, к которому прикреплена шкальная пластинка 4. Трубки заполняются рабочей жидкостью до нулевой отметки. В трубку 1 подается измеряемое давление, трубка 2 сообщается с атмосферой. При измерении разности давлений к обеим трубкам подводятся измеряемые давления.

Для исключения влияния капиллярных сил в манометрах используются стеклянные трубки с внутренним диаметром 8... 10 мм. Если рабочей жидкостью служит спирт, то внутренний диаметр трубок может быть снижен.

Двухтрубные манометры с водяным заполнением применяются для измерения давления, разрежения, разности давлений воздуха и неагрессивных газов в диапазоне до ±10 кПа. Заполнение манометра ртутью измерения расширяет пределы до 0,1 МПа, при этом измеряемой средой может быть вода, неагрессивные жидкости и газы.

При использовании жидкостных манометров для измерения разности давлений сред, находящихся под статическим давлением до 5 МПа, в конструкцию приборов вводятся дополнительные элементы, предназначенные для защиты прибора от одностороннего статического давления и проверки начального положения уровня рабочей жидкости.

Источниками погрешностей двухтрубных манометров являются отклонения от расчетных значений местного ускорения свободного падения, плотностей рабочей жидкости и среды над ней, ошибки в считывании высот h1 и h2.

Плотности рабочей жидкости и среды даются в таблицах теплофизических свойств веществ в зависимости от температуры и давления. Погрешность считывания разности высот уровней рабочей жидкости зависит от цены деления шкалы. Без дополнительных оптических устройств при цене деления 1 мм погрешность считывания разности уровней составляет ±2 мм с учетом погрешности нанесения шкалы. При использовании дополнительных устройств для повышения точности считывания h1, h2 необходимо учитывать расхождение температурных коэффициентов расширения шкалы, стекла и рабочего вещества.

Однотрубные манометры. Для повышения точности отсчета разности высот уровней используются однотрубные (чашечные) манометры (рисунок 9, б). У однотрубного манометра одна трубка заменена широким сосудом, в который подается большее из измеряемых давлений. Трубка, прикрепленная к шкальной пластинке, является измерительной и сообщается с атмосферой, при измерении разности давлений к ней подводится меньшее из давлений. Рабочая жидкость заливается в манометр до нулевой отметки.

Под действием давления часть рабочей жидкости из широкого сосуда перетекает в измерительную трубку. Поскольку объем жидкости, вытесненный из широкого сосуда, равен объему жидкости, поступившему в измерительную трубку,

 


 

Рисунок 9 – Схемы двухтрубного (в) и однотрубного (б) манометра:

1, 2 — вертикальные сообщающиеся стеклянные трубки; 3 — основание; 4 — шкальная пластина

Для исключения влияния капиллярных сил в манометрах используются стеклянные трубки с внутренним диаметром 8... 10 мм. Если рабочей жидкостью служит спирт, то внутренний диаметр трубок может быть снижен.

Двухтрубные манометры с водяным заполнением применяются для измерения давления, разрежения, разности давлений воздуха и неагрессивных газов в диапазоне до ±10 кПа. Заполнение манометра ртутью измерения расширяет пределы до 0,1 МПа, при этом измеряемой средой может быть вода, неагрессивные жидкости и газы.

При использовании жидкостных манометров для измерения разности давлений сред, находящихся под статическим давлением до 5 МПа, в конструкцию приборов вводятся дополнительные элементы, предназначенные для защиты прибора от одностороннего статического давления и проверки начального положения уровня рабочей жидкости.

Источниками погрешностей двухтрубных манометров являются отклонения от расчетных значений местного ускорения свободного падения, плотностей рабочей жидкости и среды над ней, ошибки в считывании высот h1 и h2.

Плотности рабочей жидкости и среды даются в таблицах теплофизических свойств веществ в зависимости от температуры и давления. Погрешность считывания разности высот уровней рабочей жидкости зависит от цены деления шкалы. Без дополнительных оптических устройств при цене деления 1 мм погрешность считывания разности уровней составляет ±2 мм с учетом погрешности нанесения шкалы. При использовании дополнительных устройств для повышения точности считывания h1, h2 необходимо учитывать расхождение температурных коэффициентов расширения шкалы, стекла и рабочего вещества.

Однотрубные манометры. Для повышения точности отсчета разности высот уровней используются однотрубные (чашечные) манометры (см. рис. 1, б). У однотрубного манометра одна трубка заменена широким сосудом, в который подается большее из измеряемых давлений. Трубка, прикрепленная к шкальной пластинке, является измерительной и сообщается с атмосферой, при измерении разности давлений к ней подводится меньшее из давлений. Рабочая жидкость заливается в манометр до нулевой отметки.

Под действием давления часть рабочей жидкости из широкого сосуда перетекает в измерительную трубку. Поскольку объем жидкости, вытесненный из широкого сосуда, равен объему жидкости, поступившему в измерительную трубку.

Простота конструкции и надежность гидростатического метода, лежащего в основе работы этих приборов, а также достаточно высокая точность – причины их широкого применения, как для лабораторных, так и для технических измерений небольших избыточных давлений, разрежений, разности двух давлений, атмосферного давления. Образцовые жидкостные приборы служат для поверки некоторых типов манометров, вакуумметров, тягомеров, напоромеров, барометров, дифференциальных манометров.

 

Тема 5.4 Деформационные приборы

В промышленности получили широкое распространение. Диапазон измерений 0-160 Па; 0-1000 МПа. Принцип действия: уравновешивание измеряемого давления силами упругих деформаций чувствительных элементов (трубчатая пружина [трубка Бурдона], мембрана, сильфон). По виду чувствительного элемента приборы делятся на следующие группы:

а) приборы с трубчатой пружиной (трубка Бурдона). Изменение давления Р вызывает деформацию трубки и перемещение ее свободного конца. (При подаче на вход манометра Ризб трубка разжимается, а при подаче разрежения сжимается).

 

Рисунок 10

 

б) мембранные приборы (рисунок 11). Принцип действия мембранных манометров основан на измерении деформации гофрированной мембраны, односторонне нагружаемой контролируемым давлением. Максимальный прогиб мембран (1 мм) значительно меньше хода трубчатых пружин (2-3 мм), вследствие чего кинематическая передача на стрелку прибора должна иметь большее передаточное число. Мембраны обладают значительной жесткостью и потому менее восприимчивы к вибрациям. Защита от агрессивных жидкостей и газов обеспечивается нанесением на мембраны защитных покрытий или пленок. Защита мембран от перегрузок по давлению осуществляется сравнительно просто. Диапазон измерения мембранных манометров находится в пределах 63…4000 мм.вод.ст. и 0,6…25 бар. По точности измерения обычно выпускаемые промышленностью мембранные манометры соответствуют классу 1,6 (погрешность не превышает 1,6% диапазона измерения). Изготавливается в виде тонкой пластинки из нержавеющей стали, резины, пластмассы.

Недостаток: небольшой ход чувствительного элемента

Рисунок 11

в) сильфонные приборы (рисунок 12) – гофрированный тонкостенный сосуд, выполненный из упругого материала (латунь, коррозионностойкая сталь). Сильфоны изготовляют в двух вариантах: бесшовные из тонкостенных цельнонатянутых трубок (рисунок 12, а) и сварные из плоских гофрированных кольцевых мембран (рисунок 12, б). Сварные сильфоны более чувствительны, чем бесшовные, т.к. могут быть изготовлены с большей глубиной гофров, более стабильны по своим упругим свойствам, а также, более просты в изготовлении. Однако большое количество сварных швов снижает надежность таких сильфонов. Цельнонатянутые сильфоны применяют чаще. Сложность технологии бесшовных сильфонов ограничивает выбор материалов, пригодных для их изготовления. Бесшовные сильфоны изготавливают из нержавеющей стали, бериллиевой бронзы. Обычно число гофр 4-24. Основными размерами являются: наружные диаметры D=4,5…160 мм, толщина стенок d=0,08…0,25 мм, рабочий ход сильфона 2-21 мм.

Рисунок 12

Деформация чувствительных элементов может преобразовываться в электрический сигнал с помощью преобразователей перемещений (потенциометрического, индуктивного, емкостного, тензометрического).


 



Поделиться:


Последнее изменение этой страницы: 2021-04-20; просмотров: 234; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.41.187 (0.029 с.)