Давление крови в различных отделах сосудистого русла 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Давление крови в различных отделах сосудистого русла

Поиск

Давление крови в различных отделах сосудистого русла неодинаково: в артериальной системе оно выше, в венозной — ниже. Это отчетливо видно из данных, пред­ставленных в табл. 3 и рис. 15.

 

Н/м2). Нормальное кровяное давление необходимо для циркуляции крови и снабжения кровью органов и тканей, для образования тканевой жидкости в капил­лярах, а также для осуществления секреции и экскреции.

Величина кровяного давления зависит от трех основ­ных факторов: частоты и силы сердечных сокращений; величины периферического сопротивления, то есть тонуса стенок сосудов, главным образом артериол и капилляров; объема циркулирующей крови.

Давление крови определяют в артериальных, веноз­ных, капиллярных сосудах. Артериальное давление у здорового человека является довольно постоянной величиной. Однако оно всегда подвергается небольшим колебаниям в зависимости от фаз деятельности сердца и дыхания.

Различают систолическое, диастолическое, пульсовое и среднединамическое артериальное давление.

Систолические (максимальное) давление отра­жает состояние миокарда левого желудочка. Оно состав­ляет 13,3—16,0 кПа (100—120 мм рт. ст).

Диастолическое (минимальное) давление характеризует степень тонуса артериальных стенок. Оно равняется 7,8—10,7 кПа (60—80 мм рт. ст.).

Аорта

Артерия

Артериолы

Капилляры

Венулы

Вены

Полая вена


Пульсовое давление — это разность между величинами систолического и диастолического давления. Пульсовое давление необходимо для открытия клапанов аорты и легочного ствола во время систолы желудочков. В норме оно равно 4,7—7,3 кПа (35—55 мм рт. ст). Если систолическое давление станет равным диастоличе-скому, движение крови будет невозможным и наступит смерть.

Среднединамическое давление равняется сумме диастолического и '/3 пульсового давления. Среднединамическое давление выражает энергию непре­рывного движения крови и представляет собой постоян­ную величину для данного сосуда и организма.

На величину артериального давления оказывают вли­яние различные факторы: возраст, время суток, состояние организма, центральной нервной системы и т. д. У ново­рожденных величина максимального артериального давления составляет 5,3 кПа (40 мм рт. ст.), в возрасте 1 мес — 10,7 кПа (80 мм рт. ст.), 10—14 лет — 13,3— 14,7 кПа (100—110 мм рт. ст.), 20—40 лет — 14,7— 17,3 кПа (110—130 мм рт. ст.). С возрастом максималь­ное давление увеличивается в большей степени, чем минимальное.

В течение суток наблюдается колебание величины артериального давления: днем оно выше, чем ночью.

Значительное повышение максимального артери­ального давления может наблюдаться при тяжелой физической нагрузке, во время спортивных состязаний и др. После прекращения работы или окончания сорев­нований артериальное давление быстро возвращается к исходным показателям. Повышение артериального давления называется- гипертензией, понижение — гипотензией. Гипотензия может наступить в резуль­тате отравления некоторыми наркотиками, при сильных травмах, обширных ожогах, больших кровопотерях.

Стойкие гипертензия и гипотензия могут свидетель­ствовать о нарушении функций органов, физиологиче­ских систем и всего организма в целом. В этих случаях необходима квалифицированная врачебная помощь.

У человека артериальное давление определяется непрямым методом по  Короткову <рис. 16). Для этой цели необходимо иметь сфигмоманометр и фонендоскоп. Сфигмоманометр состоит из ртутного манометра, широ­кого плоского резинового мешка-манжеты и нагнетатель­ной резиновой груши, соединенных друг с другом рези­новыми трубками. Артериальное давление у человека обычно измеряют в плечевой артерии. Резиновую ман­жету плотно накладывают на плечо. Затем с помощью груши в манжете поднимают давление воздуха выше предполагаемой величины    систолического давления крови в артерии. Затем в области локтевого сгиба, то есть ниже места пережатия, на плечевую артерию ставят фонендоскоп и начинают с помощью винта понемногу выпускать воздух из манжеты, снижая давление. Когда давление в манжете понизится настолько, что кровь при систоле оказывается способной его преодолеть, прослушиваются характерные звуки — тоны. Эти тоны обусловлены появлением тока крови при систоле и от­сутствием его при диастоле. Показания манометра, которые соответствуют появлению тонов, характеризуют максимальное, или систолическое, давление в плечевой артерии. При дальнейшем понижении давления в манжете тоны сначала усиливаются, а затем затихают и пере­стают прослушиваться. Прекращение звуковых явлений свидетельствует о том, что теперь и во время диастолы кровь способна проходить по сосуду. Прерывистое тече­ние крови превращается в непрерывное. Движение крови по сосудам в этом случае не сопровождается звуковыми явлениями. Показания манометра, которые соответствуют моменту исчезновения тонов, характеризуют диастолическое, минимальное, давление в плечевой артерии.

Артериальный пульс — периодические расширения и удлинения стенок артерий, обусловленные поступлением крови в аорту при систоле левого желудочка. Пульс характеризуется рядом признаков, которые определяются путем пальпации чаще всего лучевой артерии в нижней трети предплечья, где она расположена наиболее поверхностно.

Пульс характеризуют следующие признаки: час­тота — число ударов в 1 мин, ритмичность — пра­вильное чередование пульсовых ударов, наполнение — степень изменения объема артерии, устанавливаемая по силе пульсового удара, напряжение — характери­зуется силой, которую надо приложить, чтобы сдавить артерию до полного исчезновения пульса.

Пальпацией определяют и состояние стенок артерии: после сдавления артерии до исчезновения пульса в случае склеротических изменений сосуд определяется как плот­ный тяж.

Возникшая пульсовая волна распространяется по артериям. По мере ее распространения она ослабевает и затухает на уровне капилляров. Скорость распрост­ранения пульсовой волны в различных сосудах у одного и того же человека неодинакова, она больше в сосудах мышечного типа и меньше в эластических сосудах. Так, у людей молодого и пожилого возраста скорость распространения пульсовых колебаний в эластических сосудах лежит в пределах от 4,8 до 5,6 м/с, в крупных артериях мышечного типа — от 6,0 до 7,0—7,5 м/с. Таким образом, скорость распространения пульсовой волны по артериям значительно больше, чем скорость движения крови по ним, которая не превышает 0,5 м/с. С возрастом, когда понижается эластичность сосудов, скорость распространения пульсовой волны увеличи­вается.

Для более детального изучения пульса производят его запись с помощью сфигмографа. Кривая, полученная при записи пульсовых колебаний стенки артерии, назы­вается сфигмограммой (рис. 17).

На сфигмограмме аорты и крупных артерий различают восходящее колено — анакроту и нисходящее колено — катакроту. Анакрота отражает растяжение стенки аорты при поступлении новой порции крови и повышении давления в начале систолы левого желудочка. Пульсовая волна распространяется по сосудам, на сфигмограмме фиксируется подъем кривой. В конце систолы желудочка, когда давление в нем снижается, а стенки сосудов возвращаются в исходное состояние на сфигмограмме появляется катакрота. Во время диастолы желудочков давление в их полости становится ниже, чем в артери­альной системе, поэтому создаются условия для возвращения крови в желудочки. В результате этого давление в артериях падает, что отражается на пульсовой кривой в виде глубокой выемки — инци-зуры. Однако на своем пути кровь встречает препятствие — полу­лунные заслонки. Кровь отталкивается от них и обусловливает появление вторичной волны повышения давления. Это в свою очередь вызывает вторичное расширение стенок артерий, что фиксируется на сфигмограмме в виде дикротического подъема.

ФИЗИОЛОГИЯ МИКРОЦИРКУЛЯЦИИ

В сердечно-сосудистой системе центральным является микроциркуляторное звено, основной функцией которого является транскапиллярный обмен.

Микроциркуляторное звено сердечно-сосудистой системы представлено мелкими артериями, артериолами, метартериолами, капиллярами, венулами, мелкими венами и артериоловенулярными анастомозами. Артериоловену-лярные анастомозы служат для уменьшения сопротив­ления току крови на уровне капиллярной сети. При откры­тии анастомозов увеличивается давление в венозном русле и ускоряется движение крови по венам.

Транскапиллярный обмен происходит в капиллярах. Он возможен благодаря особому строению капилляров, стенка которых обладает двусторонней проницаемостью. Проницаемость — активный процесс, который обеспе­чивает оптимальную среду для нормальной жизнедеятель­ности клеток организма.

Рассмотрим особенности строения важнейших пред­ставителей микроциркулярного русла — капилляров.

Капилляры открыты и изучены итальянским ученым Мальпиги (1861). Общее количество капилляров в системе сосудов большого круга кровообращения составляет около 2 млрд., протяженность их — 8000 км, площадь внутренней поверхности 25 м2. Поперечное сечение всего капиллярного русла в 500—600 раз больше поперечного сечения аорты.

Капилляры имеют форму шпильки, срезанной или полной восьмерки. В капилляре различают артериальное и венозное колено, а также вставочную часть. Длина капилляра равна 0,3—0,7 мм, диаметр — 8—10 мкм. Через просвет такого сосуда эритроциты проходят друг за другом, несколько деформируясь. Скорость тока крови в капиллярах составляет 0,5—1 мм/с, что в 500—600 раз меньше скорости тока крови в аорте. Стенка капилляров образована одним слоем эндоте-лиальных клеток, которые снаружи сосуда располагаются на тонкой соединительнотканной базальной мембране.

Существуют закрытые и открытые капилляры. Работа­ющая мышца животного содержит в 30 раз больше капилляров, чем мышца, находящаяся в состоянии покоя.

Форма, размеры и количество капилляров в различ­ных органах неодинаковы. В тканях органов, в которых наиболее интенсивно происходят обменные процессы, количество капилляров на 1 мм2 поперечного сечения значительно больше, чем в органах, где метаболизм менее выражен. Так, в сердечной мышце на 1 мм2 попе­речного сечения приходится в 5—6 раз больше капил­ляров, чем в скелетной мышце.

Для выполнения капиллярами их функций (транска­пиллярного обмена) имеет значение артериальное давле­ние. В артериальном колене капилляра давление крови составляет 4,3 кПа (32 мм рт. ст.), в венозном — 2,0 кПа (15 мм рт. ст.). В капиллярах почечных клубочков давление достигает 9,3—12,0 кПа (70—90 мм рт. ст.); в капиллярах, оплетающих почечные канальцы,— 1,9— 2,4 кПа (14—18 мм рт. ст.). В капиллярах легких давле­ние равняется 0,8 кПа (6 мм рт. ст.).

Таким образом, величина давления в капиллярах тесно связана с состоянием органа (покой, активность) и его функциями.

Кровообращение в капиллярах можно наблюдать под микроскопом в плавательной перепонке лапки лягушки. В капиллярах кровь движется прерывисто, что связано с изменением просвета артериол и прекапилляр-ных сфинктеров. Фазы сокращения и расслабления длятся от нескольких секунд до нескольких минут.

Активность микрососудов регулируется нервными и гуморальными механизмами. На артериолы главным образом воздействуют симпатические нервы, на пре-капиллярные сфинктеры — гуморальные факторы (гис-тамин, серотонин и др.).

Особенности кроовотока в венах. Кровь из микро­циркуля торного русла (венулы, мелкие вены) поступает в венозную систему. В венах давление крови низкое. Если в начале артериального русла давление крови равно 18,7 кПа (140 мм рт. ст.), то в венулах оно составляет 88


1,3—2,0 кПа (10—15 мм рт. ст). В конечной части веноз­ного русла давление крови приближается к нулю и даже может быть ниже атмосферного давления.

Движению крови по венам способствует ряд факторов: работа сердца, клапанный аппарат вен, сокращение скелетных мышц, присасывающая функция грудной клетки.

Работа сердца создает разность давления крови в ар­териальной системе и правом предсердии. Это обеспечи­вает венозный возврат крови к сердцу. Наличие в венах клапанов способствует движению крови в одном направ­лении — к сердцу. Чередование сокращений и расслабле­ний мышц является важным фактором, способствующим движению крови по венам. При сокращении мышц тонкие стенки вен сжимаются, и кровь продвигается по направ­лению к сердцу. Расслабление скелетных мышц способ­ствует поступлению крови из артериальной системы в вены. Такое нагнетающее действие мышц получило название мышечного насоса, который является помощ­ником основного насоса — сердца. Движение крови по венам облегчается во время ходьбы, когда ритмически работает мышечный насос нижних конечностей.

Отрицательное внутригрудное давление, особенно в фазу вдоха, способствует венозному возврату крови к сердцу. Внутригрудное отрицательное давление вызы­вает расширение венозных сосудов области шеи и груд­ной полости, обладающих тонкими и податливыми стен­ками. Давление в венах понижается, что облегчает движение крови по направлению к сердцу.

Скорость тока крови в периферических венах состав­ляет 5—14 см/с, полых венах — 20 см/с.

Время кругооборота крови

Временем кругооборота крови называют время, необходимое для прохождения крови по двум кругам кровообращения. Установлено, что у взрослого здорового человека при 70—80 сокращениях сердца в 1 мин полный кругооборот крови происходит за 20—23 с. Из этого времени '/5 приходится на малый круг кровообращения и 4/5 — на большой.

Существует ряд методов, с помощью которых опреде­ляют время кругооборота крови. Принцип этих методов состоит в том, что в вену вводят какое-либо вещество, не встречающееся обычно в организме, и определяют, через какой промежуток времени оно появляется в одно­именной вене другой стороны или вызывает характерное для него действие.

В настоящее время для определения времени круго­оборота крови используют радиоактивный метод. В локте­вую вену вводят радиоактивный изотоп, например 24Na, на другой же руке специальным счетчиком регистрируют его появление в крови.

Время кругооборота крови при нарушениях деятель­ности сердечно-сосудистой системы может существенно изменяться. У больных с тяжелыми заболеваниями сердца время кругооборота крови может увеличиваться до 1 мин.

Движение крови в различных отделах системы крово­обращения характеризуется двумя показателями — объем­ной.и линейной скоростью кровотока.

Объемная скорость кровотока одинакова в поперечном сечении любого участка сердечно-сосудис­той системы. Объемная скорость в аорте равна количеству крови, выбрасываемой сердцем в единицу времени, то есть минутному объему крови. Такое же количество крови поступает к сердцу по полым венам за 1 мин. Одинакова объемная скорость крови, притекающей и оттекающей от органа.

На объемную скорость кровотока оказывают влияние в первую очередь разность давления в артериальной и венозной системах и сопротивление сосудов. Повышение артериального и снижение венозного давления обуслов­ливает увеличение разности давления в артериальной и венозной системах, что приводит к нарастанию скорос­ти кровотока в сосудах. Снижение артериального и по­вышение венозного давления влечет за собой уменьшение разности давления в артериальной и венозной системах. При этом наблюдается уменьшение скорости кровотока в сосудах.

На величину сопротивления сосуДов влияет ряд факторов: радиус сосудов, их длина, вязкость крови.

Линейная скорость кровотока — это путь, пройденный в единицу времени каждой частицей крови. Линейная скорость кровотока в отличие от объемной неодинакова в разных сосудистых областях. Линейная скорость движения крови в венах меньше, чем в артериях. Это связано с тем, что просвет вен больше просвета артериального русла. Линейная скорость кровотока наибольшая в артериях и наименьшая в капиллярах.

  Следовательно, линейная скорость кровотока обратно пропорциональна суммарной площади поперечного сечения сосудов.

В потоке крови скорость отдельных частиц различна. В крупных сосудах линейная скорость максимальна для частиц, движущихся по оси сосуда, минимальна — для пристеночных слоев.

В состоянии относительного покоя организма линейная скорость кровотока в аорте составляет 0,5 м/с. В период двигательной активности организма она может достигать 2,5 м/с. По мере разветвления сосудов ток крови в каж­дой веточке замедляется. В капиллярах он равен 0,5 мм/с, что в 1000 раз меньше, чем в аорте. Замедление крово­тока в капиллярах облегчает обмен веществ между тканями и кровью. В крупных венах линейная скорость тока крови увеличивается, так как уменьшается площадь сосудистого сечения. Однако она никогда не достигает скорости тока крови в аорте.

Величина кровотока в отдельных органах различна. Она зависит от кровоснабжения органа и уровня его активности.



Поделиться:


Последнее изменение этой страницы: 2021-04-20; просмотров: 92; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.67.218 (0.011 с.)