Изучить лекцию и написать краткий конспект 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Изучить лекцию и написать краткий конспект



Изучить лекцию и написать краткий конспект

Тема: Общие сведения об обработке металлов резанием

Основные понятия теории резания

Сущность технологии изготовления деталей машин состоит в последовательном использовании различных технологических способов воздействия на обрабатываемую заготовку для придания ей необходимой формы и размеров с указанной точностью. Одним из таких способов является механическая обработка заготовок резанием на металлорежущих станках.

Обработка резанием (рис. 2.1) заключается в проникновении лезвия инструмента с режущей кромкой 3 в материал заготовки 2 с последующим отделением определенного слоя материала в виде стружки 4. Лезвие инструмента 1 представляет собой клинообразный элемент.

На рабочей части инструмента может располагаться одно или несколько лезвий (клиньев) определенной формы. Режущий инструмент с заданным числом (одно, два, три и т.д.) лезвий установленной формы называют лезвийным инструментом, а обработку таким инструментом — лезвийной обработкой (рис. 2.2).

Слой материала заготовки, деформированный и отделенный в результате обработки резанием, называется стружкой. Обработка резанием заключается в срезании с обрабатываемой заготовки некоторой массы металла, специально оставленной на обработку и называемой припуском. Припуск может удаляться одновременно с нескольких поверхностей заготовки или последовательно с каждой обрабатываемой поверхности. После срезания с заготовки всего припуска, оставленного на обработку, исходная заготовка прекращает свое существование и превращается в готовую деталь.

Срезанная с заготовки стружка является побочным продуктом (отходом) обработки материалов резанием. Пластическое деформирование и разрушение материала припуска с превращением его в стружку протекает при резании в специфических условиях, характерных только для обработки материалов резанием. Таким образом, типичным признаком обработки резанием является стружка.

                            

Рис. 2.1. Схема обработки резанием:

1 — лезвие инструмента; 2 — заготовка; 3 — режущая кромка; 4 — стружка; А γ — передняя поверхность лезвия инструмента; А α задняя поверхность лезвия инструмента; υ — скорость резания

 

 

Рис. 2.2. Процессы обработки резанием:

а — точение; б — фрезерование; 1 — обрабатываемая поверхность; 2 — поверхность резания; 3 — обработанная поверхность; Dr. — направление движения резания; Ds — направление движения подачи; υ — скорость резания; t — глубина резания; α — задний угол; γ — передний угол

 

Все способы и виды обработки, основанные на срезании припуска и превращении материала в стружку и подчиняющиеся общим закономерностям, можно объединить термином «резание материалов». Способы разделения материалов на части, при которых стружка не образуется (например, разрезка ножницами), к обработке резанием не относятся. Условия деформирования обрабатываемого материала и образования новых поверхностей при разрезке ножницами не подчиняются закономерностям теории резания материалов.

Элементы резания

Поверхности заготовок, срезаемые за каждый проход инструмента, называют обрабатываемыми поверхностями 1 (см. рис. 2.2), а поверхности заготовок, вновь образуемые во время очередного прохода инструмента, — обработанными поверхностями 3. Промежуточную поверхность, временно существующую в процессе резания между обрабатываемой и обработанной поверхностями, принято называть поверхностью резания 2.

Глубина резания. Чтобы срезать слой материала, оставленный на заготовке как припуск на обработку, глубина проникновения лезвий инструмента в материал должна быть равна припуску. В этом случае припуск срезается за один проход инструмента. Если припуск большой, то его срезают за два прохода и более. Глубину проникновения лезвий инструмента в материал заготовки во время каждого прохода называют глубиной резания. Эту величину обозначают буквой t и измеряют в миллиметрах.

В большинстве случаев при обработке материалов резанием глубина резания t определяется как расстояние между обрабатываемой и обработанной поверхностями, измеряемое в направлении, перпендикулярном обработанной поверхности (см. рис. 2.2). Например, при точении глубина резания t= (D-d)/2, где при наружной обточке D и d — соответственно диаметры обрабатываемой и обработанной поверхностей, а при внутренней обработке, наоборот, D и d — соответственно диаметры обработанной и обрабатываемой поверхностей.

Главное движение резания и движение подачи. Процесс резания возможен только при непрерывном относительном перемещении заготовки и режущего инструмента. Эти движения выполняют и сообщают заготовке и инструменту исполнительные механизмы станков. При этом движения могут быть сообщены одновременно, последовательно, а также только одному из элементов — инструменту или заготовке.

Механизмы сообщают исполнительным органам станков только два простейших движения — вращательное и прямолинейное поступательное. Различные сочетания и количественные соотношения этих движений лежат в основе всех видов обработки материалов резанием.

Поступательное или вращательное движение, передаваемое заготовке или инструменту в процессе резания и имеющее наибольшую скорость по сравнению со всеми другими движениями исполнительных органов, называют главным движением резания или главным движением.

Поступательные или вращательные движения остальных органов станка, также передаваемые заготовке или инструменту, определяют движение подачи, необходимое для обеспечения отделения срезаемого с заготовки слоя по всей обрабатываемой поверхности.

Скорость резания и скорость подачи. Главное движение, скорость которого больше скорости подачи, определяет направление и скорость деформаций в материале срезаемого слоя, а следовательно, направление схода стружки и ее форму. Скорость главного движения называют скоростью резания. Эту величину обозначают буквой υ и при лезвийной обработке измеряют в м/мин. Если главное движение является вращательным (точение, фрезерование, сверление), то скорость резания равна линейной скорости точек заготовки или инструмента, находящихся во взаимодействии. Ее можно определить по формуле:

υ = 10-3 πDn,

где D — диаметр обрабатываемой поверхности заготовки или рабочей поверхности инструмента, мм; п — частота вращения заготовки или инструмента, об/мин.

Для количественной оценки движения подачи используется отношение расстояний, пройденных точками режущего лезвия в направлении движения подачи, к соответствующему числу циклов (или их долей) главного движения, выражаемое численно подачей. Главное движение подачи может выражаться:

• мм/об, если перемещение при подаче соответствует одному обороту инструмента (заготовки), совершающему главное движение резания;

• мм/зуб, если перемещение при подаче соответствует повороту инструмента (например, фрезы) на один угловой шаг его режущих зубьев;

• мм/дв. ход, если перемещение при подаче соответствует одному двойному ходу заготовки или инструмента, или υ мм/ход, если ход ординарный.

При выполнении некоторых операций (например, точения) удобно задавать скорость подачи υ в мм/мин (перемещение инструмента или заготовки в направлении движения подачи, совершаемое в течение одной минуты). Подачу инструмента или заготовки принято обозначать буквой S с индексом, соответствующим используемым единицам измерения: S0 — подача на один оборот; Sz - подача на зуб; S2x подача на двойной ход; Sx -подача на один ход.

Инструментальные материалы

Для обеспечения работоспособности металлорежущего инструмента необходимо изготовлять его рабочую часть из материала, обладающего комплексом определенных физико-механических свойств (высокими показателями твердости, износостойкости, прочности, теплостойкости и др.). Материалы, отвечающие требованиям этого комплекса и способные осуществлять резание, называются инструментальными материалами. Рассмотрим физико-механические свойства инструментальных материалов.

Чтобы внедриться в поверхностные слои обрабатываемой заготовки, режущие лезвия рабочей части инструментов должны быть выполнены из материалов, имеющих высокую твердость. В процессе резания на рабочую часть инструментов действуют силы резания, достигающие 10 кН и более. Под действием этих сил в материале рабочей части возникают большие напряжения. Чтобы эти напряжения не приводили к разрушению инструмента, используемые для его изготовления инструментальные материалы должны иметь достаточно высокую прочность.

Среди всех инструментальных материалов наилучшим сочетанием прочностных характеристик обладают инструментальные стали. Чем большее количество теплоты отводится от лезвия в глубь инструмента, тем ниже температура на его контактных поверхностях. Теплопроводность инструментальных материалов зависит от их химического состава и температуры нагрева.

Значение коэффициента трения скольжения материала заготовки по инструментальному материалу зависит от химического состава и физико-механических свойств материалов контактирующих пар, а также от контактных напряжений на трущихся поверхностях и скорости скольжения.

Коэффициент трения связан функциональной зависимостью с силой трения и работой сил трения на пути взаимного скольжения инструмента и заготовки, поэтому значение этого коэффициента оказывает влияние на износостойкость инструментальных материалов.

Взаимодействие инструмента с обрабатываемым материалом протекает в условиях постоянного (подвижного) контакта. При этом оба тела, образующие пару трения, взаимно изнашиваются.

Материал каждого из взаимодействующих тел обладает:

• свойством истирать материал, с которым он взаимодействует;

• износостойкостью, т. е. способностью материала сопротивляться истирающему действию другого материала.

Изнашивание лезвий инструмента происходит на протяжении всего периода взаимодействия с обрабатываемым материалом. В результате этого лезвия инструмента теряют некоторую часть своих режущих свойств, изменяется форма рабочих поверхностей инструмента.

Износостойкость не является неизменным свойством инструментальных материалов, она зависит от условий резания.

Современные инструментальные материалы отвечают требованиям, рассмотренным выше. Они подразделяются на следующие группы:

• инструментальные стали;

• твердые сплавы (металлокерамика);

• минералокерамика и керметы;

• синтетические композиции из нитрида бора;

• синтетические алмазы.

Режимы резания

Качество и эффективность изготовления деталей машин зависят от рационального проведения процессов обработки заготовок резанием, которое достигается в следующих случаях:

• режущая часть инструмента имеет оптимальные геометрические параметры и качественную заточку лезвий;

• обработка заготовок ведется с технически и экономически обоснованными подачами S и скоростями резания υ;

• возможности механизмов станка — коробки подач и коробки скоростей — позволяют реализовать обоснованные значения подачи S и скорости резания υ.

Режимы резания характеризуются числовыми значениями глубины резания, подачи (или скорости движения подачи) и скорости резания, а также геометрическими параметрами и стойкостью инструментов, силами резания, мощностью и другими параметрами процесса резания, от которых зависят его технико-экономические показатели.

Выбор режимов резания можно считать рациональным, если значения перечисленных параметров позволяют получить высокие технико-экономические показатели. Параметры режима резания взаимосвязаны, поэтому нельзя произвольно изменять значение одного из них, не изменяя соответственно всех прочих.

При выборе и назначении режимов резания необходимо производить соответствующее согласование значений всех параметров с возможностями их реализации на станках. Необходимость учета большого числа взаимовлияющих факторов при назначении режимов резания обусловила использование метода постепенного приближения. На практике некоторым параметрам задают предварительные значения, а затем их корректируют с учетом других параметров до тех пор, пока не получат окончательные значения, которые могут быть использованы для реализации данного технологического процесса обработки. Кроме того, следует отметить, что решение поставленной задачи почти всегда много-нариантно, т.е. несколько вариантов сочетаний параметров режимов резания удовлетворяют поставленным требованиям.

Обычно выбор основных параметров режимов резания начинают с определения глубины резания. Она связана с припуском, оставляемым для выполнения данной технологической операции. На операциях окончательной обработки припуск составляет не более 0,5мм. На промежуточных операциях припуск на обработку изменяется в пределах 0,5...5мм. На операциях предварительной обработки заготовок в зависимости от их размеров и способа изготовления припуск может быть более 5 мм.

Например, припуск менее 7 мм может быть срезан за один проход резца (глубина резания равна припуску на обработку). В случае превышения некоторых критических значений глубины резания могут возникнуть вибрации станка, приспособления, инструмента, заготовки, поэтому припуск более 7 мм срезают за два или несколько проходов, а глубина резания при каждом проходе может быть постоянной или ее последовательно уменьшают.

Значение подачи S (как и глубины резания) определяют в зависимости от вида технологической операции. Операции окончательной обработки ведут при подаче на оборот S0 < 0,1 мм/об. При операциях промежуточного формообразования подачу назначают в пределах S0= 0,1...0,4 мм/об. Операции предварительной обработки для сокращения времени стремятся вести при подаче S0= 0,4...0,7 мм/об. При обработке заготовок на тяжелых станках можно применять глубину резания до 30 мм и подачу до 1,5 мм/об.

Предварительное значение скорости резания υ при известных глубине резания t и выбранном интервале подач S вычисляют по формуле, которая приводится в справочниках по режимам резания. Твердость заготовки НВ устанавливают по технической документации, сопровождающей партию заготовок, поступающих на обработку. Стойкость инструмента характеризуется периодом стойкости Тр, т.е. временем работы инструмента между переточками. Его назначают согласно рекомендациям справочных материалов в зависимости от характера выполняемой операции и инструментального материала. На практике используют некоторый интервал значений периода стойкости. Например, для твердосплавных резцов при выполнении операций промежуточного формообразования можно принять период стойкости T = 30...45 мин.

По формуле вычисляют два значения скорости резания: большее — для меньших значений подачи S и периода стойкости Т и меньшее — для больших их значений. По найденным значениям скорости резания υ, м/мин, для заданного диаметра D, мм, обрабатываемой заготовки по формуле п = 1000 υ/(πD), об/мин, рассчитывают два значения частоты вращения шпинделя — наибольшее и наименьшее, т.е. определяют интервал значений частоты вращения шпинделя, в пределах которого можно выбрать определенное значение, обеспечиваемое кинематикой станка.

Если на предварительном этапе устанавливают некоторый интервал значений параметров резания, в пределах которого достигаются заданные точность и качество обрабатываемой детали, то следующим этапом является выбор фактических (рабочих) значений основных параметров режимов резания.

Глубина резания (рабочая), как правило, равна полуразности диаметров обрабатываемой и обработанной детали (при точении).

Рабочую подачу выбирают из числа имеющихся в коробке подач станка, причем это значение должно находиться в пределах интервала предварительно выбранных значений подач.

Рабочую частоту вращения шпинделя выбирают из числа значений, обеспечиваемых коробкой скоростей станка, с учетом того, что она должна находиться в интервале частот для меньшей и большей скоростей.

С помощью установленных рабочих значений основных параметров режимов резания — глубины резания t, подачи S и частоты вращения шпинделя п — проводят расчет остальных рабочих режимов и соответствующих технико-экономических показателей.

Рабочую скорость резания υ, м/мин, при известной частоте вращения шпинделя п, об/мин, и заданном диаметре заготовки D, мм, можно рассчитать по формуле υ =10-3π Dn.

Формулы для расчета рабочих значений периода стойкости инструмента, силы резания, момента вращения Мв, кН۠۠∙м, на шпинделе станка и эффективной мощности, затрачиваемой на обработку заготовки резанием, приводятся в справочнике.

 

Изучить лекцию и написать краткий конспект



Поделиться:


Последнее изменение этой страницы: 2021-04-13; просмотров: 43; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.12.108.236 (0.023 с.)