Интенсивная терапия и  реаниматология 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Интенсивная терапия и  реаниматология



МЕТОДИЧЕСКИЕ РАЗАРАБОТКИ

 

Владикавказ - 2019

 

Составитель:

кандидат медицинских наук, доцент Мильдзихов Г.К.

Рецензенты:

 

- доктор медицинских наук, профессор ТОТИКОВ В.З.

- доктор медицинских наук, профессор Слепушкин В.Д.

Методическая разработка утверждена и рекомендована к печати ЦКУМС

ФГБОУ ВО СОГМА Минздрава России от  12.10. 2016 г. протокол № 4.

 

 

 

 

СОДЕРЖАНИЕ:

КЛИНИЧЕСКАЯ ФИЗИОЛОГИЯ ДЫХАНИЯ И КРОВООБРАЩЕНИЯ

В ИНТЕНСИВНОЙ ТЕРАПИИ.................................................................... 4

НЕОТЛОЖНАЯ ПОМОЩЬ ПРИ ОТДЕЛЬНЫХ ВИДАХ ИБС

ИНФАРКТ МИОКАРДА КАРДИОГЕННЫЙ ШОК................................... 12

ОБМОРОК, КОЛЛАПС, КОМА................................................................... 21

 

ОБЩАЯ АНЕСТЕЗИЯ НА ДОГОСПИТАЛЬНОМ ЭТАПЕ....................... 30

 

ОСТРАЯ ДЫХАТЕЛЬНАЯ НЕДОСТАТОЧНОСТЬ.................................. 42

 

Острые экзогенные отравления.................................................. 55

 

ТЕРМИНАЛЬНЫЕ СОСТОЯНИЯ

СЕРДЕЧНО-ЛЕГОЧНАЯ РЕАНИМАЦИЯ НА

ДОГОСПИТАЛЬНОМ ЭТАПЕ.................................................................... 78

 

ШОК............................................................................................................... 100

 

ОСТРАЯ СЕРДЕЧНАЯ НЕДОСТАТОЧНОСТЬ

ОТЕК ЛЕГКИХ............................................................................................. 110

 


КЛИНИЧЕСКАЯ ФИЗИОЛОГИЯ ДЫХАНИЯ И КРОВООБРАЩЕНИЯ

В ИНТЕНСИВНОЙ ТЕРАПИИ

ДЫХАТЕЛЬНАЯ СИСТЕМА

Основной функцией легких является обмен О2 и СО2 между внешней средой и организмом. Это достигается сочетанием вентиляции, диффузии газов через альвеолярно-капиллярную мембрану и легочного кровообращения (В. Д. Малышев, 1989).

Примечание. Помимо основной функции газообмена, легкие играют большую роль в эндо- и экзогенной защите, обеспечивают детоксикацию, ингибицию, депонирование многих биологически активных веществ (В. А. Гончарова, Н. В. Сыромятникова. 1975), участвуют в белковом, жировом, углеводном обмене, выполняют фибринолитическую и антикоагулянтную, кондиционирующую и выделительную функции, регулируют водный баланс (А. П. Зильбер, 1977), синтезируют поверхностно-активные вещества (И. А. Козлов, М. А. Выжигина, М. Л., Бархи. 1983).

Процесс дыхания условно можно подразделить на три этапа.

Первый этап (внешнее дыхание) включает в себя доставку кислорода из внешней среды в альвеолы.

Вторым этапом дыхания является диффузия О2 через альвеолярно-капиллярную мембрану ацинуса и транспортировка его к тканям; движение СО2 осуществляется в обратном порядке.

Третий этап дыхания (тканевое дыхание) заключается в утилизации кислорода при биологическом окислении субстратов и образовании, в конечном итоге, энергии в клетках.

Примечание. Регуляция дыхания осуществляется центральной (дыхательный центр) и периферической нервной системой. В кровеносных сосудах находятся хемореценторы, реагирующие на концентрацию продуктов обмена, парциальное напряжение кислорода и углекислого газа и реакцию внутренней среды организма (рН). Через них осуществляется регуляция объема вентиляции, частоты, глубины, длительности вдоха и выдоха, силы сокращений дыхательных мышц.

Первый этап. Адекватность первого этапа зависит от многих факторов, начиная с функции верхних дыхательных путей: очищение, согревание, увлажнение воздуха. Эффективность очищения вдыхаемого воздуха зависит от количества и качественного состояния макрофагов, содержащихся в слизистых оболочках; они фагоцитируют и переваривают минеральные и бактериальные частицы. Внутренняя поверхность верхних дыхательных путей выстлана реснитчатым псевдомногослойным эпителием. Его основная функция — эвакуация мокроты из верхних дыхательных путей; в норме из трахеи и бронхов за сутки удаляется до 100 мл мокроты, при некоторых видах патологии до 100 мл/час.

Для нормальной функции верхних дыхательных путей важное значение имеет состояние кашлевого рефлекса. При его нарушении не происходит своевременного освобождения верхних дыхательных путей от патологического секрета.

Различают верхние (полость носа, рта, глотки и гортани) и нижние (трахея, бронхи) дыхательные пути. Емкость верхних дыхательных путей называется анатомическим мертвым пространством, оно приблизительно равно 150 см³ или 2.2 см³ на 1 кг массы. Воздух, заполняющий анатомическое мертвое пространство, в газообмене не участвует. Вентиляция легких зависит от дыхательного объёма и частоты дыханий в 1 мин. Основные параметры вентиляции легких представлены в табл.1

Таблица 1. Нормальные величины функциональных проб легких

(Comroe J. et al., 1961).

Показатель Параметры
Дыхательный объем 0,5л
Резервный объем вдоха 1,5-2 л
Остаточный объем 1,0-1,5 л
Общая емкость легких 3,8-5,8 л
Резервный объем выдоха 1,5-2,0 л
Минутный объем дыхания 6,0-9,0 л/мин.
Жизненная емкость легких 2,8-4,3 л

Примечание. Данные приведены для здорового человека (поверхность тела 1,7 м2) в покое лежа при дыхании воздухом.

 

Величина вдоха определяется разницей между силой сокращения дыхательных мышц и эластичностью легких. Эластичность легких зависит от поверхностного натяжения жидкости, покрывающей альвеолы и эластичности самой легочной ткани. Вентилируемость легких во время вдоха (по значимости): нижний отдел, передний, задний, верхушка. Работа дыхания увеличивается при заболеваниях легких, сопровождающихся повышением эластичного и неэластичного сопротивлений. Этот факт необходимо учитывать при проведении искусственной вентиляции легких (ИВЛ).

Вторым этапом дыхания является диффузия кислорода через АЦИНУС и транспортировка его к тканям; движение углекислого газа осуществляется в обратном порядке. Ацинус является структурной единицей легких. Он состоит из дыхательной бронхиолы и альвеол. Функциональная единица - РЕСПИРОН.

       Вентиляционно-перфузионные отношения в легких.

а —нормальная вентиляция и нормальная перфузия; б—нормальная вентиляция и отсутствие перфузии; в—отсутствие вентиляции и нормальная перфузия.

Диффузия кислорода осуществляется за счет парциальной разности его содержания в альвеолярном воздухе и венозной крови, после чего незначительная часть О2, растворяется в плазме, а большая часть связывается с гемоглобином, содержащимся в эритроцитах, и в таком виде транспортируется к органам и тканям (см. ниже: Кислородно-транспортная функция крови). Соседние альвеолы сообщаются между собой порами (поры Кона) межальвеолярных перегородок. Через них возможна незначительная вентиляция альвеол с закупоренными слизью ходами, например, при астматическом статусе.

Примечание. Функция альвеолярно-капиллярной мембраны не ограничивается только диффузией газов. Она влияет на химический состав крови, участвует в процессах регуляции свертывающей системы крови и др.

Внутренняя поверхность альвеол покрыта сложным белковым поверхностно-активным веществом — СУРФАКТАНТОМ. Сурфактантный комплекс препятствует спадению терминальных бронхиол, играет важную роль в регуляции водного баланса, осуществляет противоотечную функцию, оказывает защитное действие за счет противоокислительной активности. Предполагается участие сурфактанта в процессах диффузии О2, и СО2, через альвеолярно-капиллярный барьер за счет регулирующего влияния на динамику перикапиллярной, интерстициальной и альвеолярной жидкости (В. Б. Скобельский, 1996). Сурфактант очень чувствителен к различным эндо- и экзогенным факторам: снижение кровообращения, вентиляции, уменьшение парциального напряжения кислорода в артериальной крови (раО2) вызывают уменьшение его количества, в результате чего нарушается стабильность поверхности альвеол, что может осложниться возникновением ателектазов.

Третий этап дыхания заключается в утилизации кислорода в цикле трикарбоновых кислот (цикл Кребса) для биологического окисления белков, жиров и углеводов, с целью выработки энергии. Молекулярной основой клеточного дыхания является окисление углерода до углекислого газа и перенос атома водорода на атом кислорода с последующим образованием молекулы воды. Данный путь получения энергии (аэробный) в организме является ведущим и наиболее эффективным. Так, если из 1 молекулы глюкозы при анаэробном окислении образуется только 2 молекулы АТФ, то при аэробном окислении из нее образуется 36 молекул АТФ. В нормальных условиях 96—98% всей энергии, вырабатываемой в организме, образуется в условиях аэробного окисления и только 2—4% приходится на анаэробное. Отсюда ясна исключительная роль адекватного снабжения организма кислородом.

Сосудистое русло легких состоит из 2-х систем: легочной и бронхиальной. Давление в легочной артерии в среднем равно 17—23 мм рт. ст. Общая поверхность стенок капилляров составляет 30—60 м2, а при физической нагрузке увеличивается до 90 м2. Диастолическое давление в левом желудочке равно 0,2 мм рт. ст. Нормальный кровоток в системе легочной артерии зависит от величины венозного возврата крови к сердцу, сократительной способности миокарда, функционирования клапанов, тонуса артериол и прекапиллярных сфинктеров. В зависимости от конкретных условий, емкость малого круга может значительно меняться, т. к. он относится к системе сосудов с низким давлением.

 



Поделиться:


Последнее изменение этой страницы: 2021-03-09; просмотров: 65; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.81.210 (0.009 с.)