Строение нуклеиновых кислот. Биологическая роль. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Строение нуклеиновых кислот. Биологическая роль.



Нуклеиновые кислоты – биосополимеры, состоящие из пуринового или пиримидинового основания, углеводов (рибозы и дезоксирибозы) и фосфатных групп; они входят в состав клеточного ядра (nucleus), отсюда их название – нуклеотиды.

Пуриновые основания: аденин и гуанин:

 
аденин (А)   гуанин (Г)

Пиримидиновые основания: цитозин, урацил, тимин:

 
цитозин (Ц)
 
урацил (У)
тимин (Т)

В состав мононуклеотидов обычно входят D-рибоза (в форме β-D-рибофуранозы), глюкоза (редко) и β-D-2-дезоксирибоза:

 
β-D-рибоза   β-D-дезоксирибоза

Пуриновые или пиримидиновые основания, рибоза и дезоксирибоза, а также фосфорная к-та связаны в молекулах нуклеотидов однотипно. Пентозы, с одной стороны, посредством одного углеродного атома соединяются с соответствующим основанием: с пуриновым по его 9-му атому азота, с пиримидиновым – по 3-му атому азота, а с другой – эфирной связью соединяются с монофосфорной, дифосфорной или трифосфорной к-тами, образуя соответствующие мононуклеотиды. Последние за счет конденсации ОН-групп фосфорных кислот и пентозов полимеризуются в РНК и ДНК.

Биологическая роль нуклеиновых кислот и функции мононуклеотидов.

1. ДНК: хранение генетической информации.

2. РНК:

- хранение генетической информации (информосомы, некоторые РНК-вирусы);

- реализация генетической информации: и-РНК (м-РНК) — информационная (матричная), т-РНК (транспортная), р-РНК (рибосомальная). Участвуют в процессе синтеза белка;

- каталитическая ф-я: некоторые молекулы РНК катализируют реакции гидролиза 3′,5′-фосфодиэфирной связи в самой молекуле РНК-«самосплайсинг».

Функции мононуклеотидов:

1) структурная — построение нуклеиновых кислот, некоторых коферментов и простетических групп ферментов;

2) энергетическая — аккумуляторы энергии за счет имеющихся макроэргических связей. АТ Ф — универсальный аккумулятор энергии, энергия УТ Ф используется для синтеза гликогена, ЦТ Ф — для синтеза липидов, ГТФ — для движения рибосом в ходе трансляции (биосинтез белка) и передачи гормонального сигнала (G-белок);

3) регуляторная: мононуклеотиды — аллостерические эффекторы многих ключевых ферментов, цАМФ и цГМФ — посредники в передаче гормонального сигнала при действии многих гормонов на клетку (аденилатциклазная система), активируют протеинкиназы.

 

Переваривание, основные ферменты. Образование мочевой кислоты.

42. Клинико- диагностическое значение мочевой кислоты.

43. Обмен пуриновых и пиримидиновых оснований.

44. Углеводы. Биологическая роль в организме.

Моносахариды.

Моносахариды представляют собой альдегидные или кетоновые производные полигидроксиспиртов, содержащих как минимум три атома углерода.

Моносахариды различают по положению их функциональной карбонильной группы (альдегиды или кетоны) и по числу атомов углерода, которое они содержат. Если карбонильная группа в составе моносахарида связана с атомом C1, такой моносахарид называютальдозой. Если же карбонильная группа связана с атомом C2, то —кетозой. Примеры альдоз: эритроза, рибоза, глюкоза, манноза, галактоза. Примеры кетоз: рибулоза, ксилулоза, фруктоза.

Самые простые моносахариды — триозы (глицеральдегид — альдотриоза, дигидроксиацетон — кетотриоза).Четырёх-,пяти-,шести- и семиуглеродистые моносахариды называют тетрозами,пентозами,гексозами игептозами, соответственно.

Моносахариды можно рассматривать как производные многоатомных спиртов, содержащие карбонильную (альдегидную или кетонную) группу. Если карбонильная группа находится в конце цепи, то моносахарид представляет собой альдегид и называется альдозой; при любом другом положении этой группы моносахарид является кетоном и называется кетозой. Простейшие представители моносахаридов – триозы: глицеральдегид и диоксиацетон. При окислении первичной спиртовой группы трехатомного спирта – глицерола – образуется глицеральдегид (альдоза), а окисление вторичной спиртовой группы приводит к образованию диоксиацетона (кетоза).

Стереоизомерия моносахаридов. Все моносахариды содержат асимметричные атомы углерода: альдотриозы – один центр асимметрии, альдотетрозы – 2, альдопентозы – 3, альдогексозы – 4 и т.д. Кетозы содержат на один асимметричный атом меньше, чем альдозы с тем же числом углеродных атомов. Следовательно, кетотриоза диоксиацетон не содержит асимметричных атомов углерода. Все остальные моносахариды могут существовать в виде различных стереоизомеров. Общее число стереоизомеров для любого моносахарида выражается формулой N = 2n, где N – число стереоизомеров, а n – число асимметричных атомов углерода. Как отмечалось, глицеральдегид содержит только один асимметричный атом углерода и поэтому может существовать в виде двух различных стереоизомеров. Изомер глицеральдегида, у которого при проекции модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны, принято считать D-глицеральдегидом, а зеркальное отражение – L-глицеральдегидом:

Альдогексозы содержат четыре асимметричных атома углерода и могут существовать в виде 16 стереоизомеров (24), представителем которых является, напр, глюкоза. Для альдопентоз и альдотетроз число стереоизомеров равно соответственно 23 = 8 и 22 = 4. Все изомеры моносахаридов подразделяются на D- и L-формы (Dи L-конфигурация) по сходству расположения групп атомов у последнего центра асимметрии с расположением групп у D- и L-глицеральдегида. Природные гексозы: глюкоза, фруктоза, манноза и галактоза – принадлежат, как правило, по стереохимической конфигурации к соединениям D-ряда.

в растворе в основном существуют в полуацетальных формах. Полуацетальный гидроксил отличается большей реакционной способностью.

природные моносахариды обладают оптической активностью.

Дисахариды.

Дисахариды – сложные сахара, каждая молекула которых при гидролизе распадается на две молекулы моносахаридов. По строению дисахариды – это гликозиды, в которых 2 молекулы моносахаридов соединены гликозидной связью. мальтоза, лактоза и сахароза. Мальтоза, являющаяся α-глюкопиранозил-(1–>4)-α-глюкопиранозой, образуется как промежуточный продукт при действии амилаз на крахмал (или гликоген), содержит 2 остатка α-D-глюкозы

В молекуле мальтозы у второго остатка глюкозы имеется свободный полуацетальный гидроксил. Такие дисахариды обладают восстанавливающими свойствами.

Одним из наиболее распространенных дисахаридов является сахароза – обычный пищевой сахар. Молекула сахарозы состоит из одного остатка D-глюкозы и одного остатка D-фруктозы. Следовательно, это α-глюкопиранозил-(1–>2)-β-фруктофуранозид:

В отличие от большинства дисахаридов сахароза не имеет свободного полуацетального гидроксила и не обладает восстанавливающими свойствами. Гидролиз сахарозы приводит к образованию смеси, В этой смеси преобладает сильно левовращающая фруктоза, которая инвертирует (меняет на обратный) знак вращения правовращающего раствора исходной сахарозы. Дисахарид лактоза содержится только в молоке и состоит из D-галактозы и D-глюкозы.

 

Полисахариды.

Полисахариды — или гликаны — состоят из моносахаридов, связанных между собой гликозидными связями. Полисахариды в отличие от белков и нуклеиовых кислот образуют разветвлённые и линейные полимерные структуры. Это связано с тем, что гликозидные связи могут образовываться между любыми гидроксильными группами моносахаридов.

Олигосахариды, содержащие три и более моносахаридных остатков, относительно редки и обнаруживаются чаще всего в клетках растений. Дисахариды — простейшие полисахариды — распространены гораздо больше. Многие из них образуются при расщеплении крупных полисахаридов.

Дисахарид лактоза содержится в молоке в концентрации0–7%.Самым распространённым дисахаридом является сахароза (столовый сахар).

Примерами структурных полисахаридов явл целлюлоза и хитин. Клеточная стенка клеток растений содержит в качестве основного компонента целлюлозу. Это позволяет растениям выдерживать значительную разницу в осмотическом давлении между внеклеточной и внутриклеточной средой вплоть до 20 атм. Целлюлоза представляет собой линейный полимер длиной до 15 000 остатковD-глюкозы,связанных между собой с помощью β(1→4)-гликозидныхсвязей.

48. Внешний обмен углеводов. Ферменты.

Гликолиз, 1,2 этапы.

 

БУравнения реакций

1.Глюкоза + АТФ Глюкозо-6-фосфат+ АДФ + H+

В первой реакции происходит перенос остатка фосфорной кислоты с АТФ на

 

молекулу глюкозы. Эту реакцию катализирует фермент гексокиназа. Помимо глюкозы гексокиназа фосфорилирует и другие моносахариды: маннозу, фруктозу. В печени присутствует изоферментглюкокиназа, который катализирует ту же реакцию, однако имеет более высокую константу Михаэлиса. Это значит, что его сродство к глюкозе ниже, чем у гексокиназы. Кофактором в реакции служатионы магния Mg2+. Они нейтрализуют отрицательный заряд двух остатков фосфорной кислоты в молекуле АТФ.



Поделиться:


Последнее изменение этой страницы: 2021-02-07; просмотров: 96; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.175.182 (0.014 с.)