История возникновения нанотехнологий. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

История возникновения нанотехнологий.



Наука «Нанотехнология» возникла из-за революционных изменений в информатике!

В 1947 году был изобретен транзистор, после чего началась эпоха расцвета полупроводниковой техники, при которой размеры созда­ваемых кремниевых устройств постоянно уменьшались. Термин «нанотехнология» в 1974 году предложил японец Норё Танигути для описания процесса построения новых объектов и материалов при помощи манипуляций с отдельными атомами. Название происходит от слова «нанометр» - одна миллиардная часть метра (10-9м).

В современном звучании нанотехнологии - это технологии изготовления сверхмикроскопических конструкций из мельчайших частиц материи, объединяющие все технические процессы, связанные непосредственно с атомами и молекулами.

У современной нанотехнологии достаточно глубокий исторический след. Археологические находки свидетельствуют о существовании коллоидных рецептур еще в античном мире например, "китайские чернила" в Древнем Египте. Знаменитая Дамасская сталь, изготавливалась благодаря наличию в ней нанотрубок.

Отцом идеи нанотехнологии условно можно считать греческого философа Демокрита приблизительно в 400 г.д.н. эры он впервые использовал слово "атом", что в переводе с греческого означает "нераскалываемый", для описания самой малой частицы вещества.

Вот примерный путь развития:

ü 1905 год. Швейцарский физик Альберт Эйнштейн опубликовал работу, в которой доказывал, что размер молекулы сахара составляет примерно 1 нанометр.

ü 1931 год. Немецкие физики Макс Кнолл и Эрнст Руска создали электронный микроскоп, который впервые позволил исследовать нанообъекты.

ü 1934 год. Американский физик-теоретик, лауреат Нобелевской премии Юджин Вигнер теоретически обосновал возможность создания ультрадисперсного металла с достаточно малым числом электронов проводимости.

ü 1951 год. Джон фон Нейман выделил принципы самокопирующихся машин, ученые в целом подтверждали их возможность.

ü В 1953 году Ватсон и Крик описали структуру ДНК, которая показала, как живые объекты передают инструкции, которые руководят их постройкой.

ü 1959 год. Американский физик Ричард Фейнман впервые опубликовал работу, в которой оценивались перспективы миниатюризации. Нобелевский лауреат Р. Фейнман написал фразу, воспринимаемую сейчас как пророчество: "Насколько я вижу, принципы физики не запрещают манипулировать отдельными атомами". Эта мысль прозвучала тогда, когда начало постиндустриальной эпохи ещё не было осознано; в эти годы не было ни интегральных схем, ни микропроцессоров, ни персональных компьютеров.

ü 1974 год. Японский физик Норио Танигучи ввел в научный оборот слово "нанотехнологии", которым предложил называть механизмы, размером менее одного микрона. Греческое слово "нанос" означает примерно "старичок".

ü 1981 год. Глейтер впервые обратил внимание на возможность создания уникальных по свойствам материалов, структура которых представлена кристаллитами наноразмерного интервала.

ü 27 марта 1981 года новости радио CBS процитировали ученого, работающего в NASA, который сказал, что инженеры будут способны строить самовоспроизводящихся роботов в пределах двадцати лет, для использования в космосе или на Земле. Эти машины строили бы копии себя, и копиям можно было бы делать предписания создавать полезные продукты.

ü 1982 год Г. Бининг и Г. Рорер создали первый сканирующий туннельный микроскоп.

ü 1985 год. Американский физики Роберт Керл, Хэрольд Крото и Ричард Смэйли создали технологию, позволяющую точно измерять предметы, диаметром в один нанометр.

ü 1986 год. Нанотехнология стала известна широкой публике. Американский ученый Эрик Дрекслер опубликовал книгу "Машины созидания: пришествие эры нанотехнологии", в которой предсказывал, что нанотехнология в скором времени начнет активно развиваться.

ü 1991 год, Хьюстон (США), химический факультет университета Раиса. В своей лаборатории доктор Р. Смоли (лауреат Нобелевской премии за 1996 год) с помощью лазера испарял под вакуумом графит, газовая фаза которого состояла из достаточно крупных крастеров: в каждом по 60 атомов углерода. Кластер из 60 атомов более устойчив, так как имеет повышенную величину свободной энергии. Этот кластер - структурное образование похожее на футбольный мяч и предложил назвать эту молекулу фуллереном.

ü 1991 год, Сотрудник лаборатории фирмы NEC в Японии Сумио Идзима впервые обнаружил углеродные нанотрубки, которые ранее были предсказаны за несколько месяцев до этого российским физиком Л. Чернозатонским и американецем Дж. Минтмиром.

ü 1995 год. В Научно-исследовательском физико-химическом институте имени Л.Я. Карпова разработали на основе пленочного нанокомпозита датчик, выявляющий различные вещества в атмосфере (аммиак, спирт, водяной пар).

ü 1997 год. Ричард Е.Смоли, Лауреат Нобелевской премии 1996 г. в области химии, профессор химии и физики предсказал сборку атомов уже к 2000 г. и к этому же времени спрогнозировал появление первых коммерческих наноизделий. Этот прогноз оправдался в предсказанный срок.

ü 1998 год. были экспериментально подтверждены зависимости электрических свойств нанотрубок от геометрических параметров.

ü 1998 год. Голландский физик Сеез Деккер создал транзистор на основе нано-технологий.

ü 1998 год. Темпы развития нанотехники стали резко нарастать. Япония определила нанотехнологию как вероятную технологическую категорию 21-го века.

ü 1999 год. Американские физики Джеймс Тур и Марк Рид определили, что от-дельная молекула способна вести себя также, как молекулярные цепочки.

ü 2000 год. Исследовательская группа фирмы "Хьюлетт-Паккард" создала с помощью новейших нанотехнологических методов самосборки молекулу-переключатель или минимикродиод.

ü 2000 год. Начало эры гибридной наноэлектроники.

ü 2002 год. С. Деккер объединил нанотрубку с ДНК, получив единый наномеханизм.

ü 2003 год. Японские ученые стали первыми в мире, кому удалось создать твер-дотельное устройство, в котором реализован один из двух основных элементов, необходимых для создания квантового компьютера. 2004 года. Был презентован "первый в мире" квантовый компьютер

ü 7 сентября 2006 года Правительство Российской Федерации одобрило концепцию Федеральной целевой программы развития нанотехнологий на 2007-2010 годы.

Таким образом, сформировавшись исторически, к настоящему моменту, нанотехнология, завоевав теоретическую область общественного сознания продолжает проникновение в его обыденный пласт.

Однако нанотехнологию не стоит сводить только к локальному революционному прорыву в указанных областях (электроника, ин­формационные технологии). Уже сейчас в нанотехнологии получен ряд исключительно важных результатов, позволяющих надеяться на существенный прогресс в развитии многих других направлений науки и техники (медицина и биология, химия, экология, энергетика, механика и т. п.). Например, при переходе к нанометровому диапа­зону (т. е. к объектам с характерными длинами около 10 нм) многие важнейшие свойства веществ и материалов изменяются существен­ным образом. Речь идет о таких важных характеристиках, как элек­тропроводность, коэффициент оптического преломления, магнит­ные свойства, прочность, термостойкость и т. п. На основе материалов с новыми свойствами уже сейчас создаются новые типы солнечных батарей, преобразователей энергии, экологически безо­пасных продуктов и т. п. Возможно, что именно производство деше­вых, энергосберегающих и экологически безопасных материалов станет наиболее важным последствием внедрения нанотехнологий. Уже созданы высокочувствительные биологические датчики (сенсоры) и другие устройства, позволяющие говорить о возникно­вении новой науки нанобиотехнологии и имеющие огромные перспективы практического применения. Нанотехнология предлагает новые возможности микрообработки материалов и создания на этой основе новых производственных процессов и новых изде­лий, что должно оказать революционное воздействие на экономи­ческую и социальную жизнь грядущих поколений.

 



Поделиться:


Последнее изменение этой страницы: 2021-02-07; просмотров: 367; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.89.85 (0.006 с.)