Нанотехнологии в современном мире. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Нанотехнологии в современном мире.



Нанотехнологии в современном мире.

Нанотехнологии в разных сферах жизнедеятельности человека

Проникновение нанотехнологии в сферы человеческой деятельности можно представить в виде дерева нанотехнологии. Применение имеет вид дерева, ветви которого представляют основные сферы применения, а ответвления от крупных ветвей представляют дифференциацию внутри основных сфер применения на данный момент времени.

На сегодняшний день (2000 г. - 2010 г.) имеется следующая картина:

ü биологические науки предполагают развитие технологии генных меток, поверхности для имплантантов, антимикробные поверхности, лекарства направленного действия, тканевая инженерия, онкологическая терапия.    

ü простые волокна предполагают развитие бумажной технологии, дешевых строительных материалов, лёгких плит, автозапчастей, сверхпрочных материалов.

ü наноклипсы предполагают производство новых тканей, покрытие стёкол, "умных" песков, бумаги, углеродных волокон.

ü защита от коррозии способами нанодобавок к меди, алюминию, магнию, стали.

ü катализаторы предполагают применение в сельском хозяйстве, дезодорировании, а также производство продуктов питания.

ü Легкоочистимые материалы находят применение в быту, архитектуре, молочной и пищевой промышленности, транспортной индустрии, санитарии. Это производство самоочищающихся стёкол, больничного инвентаря и инструментов, антиплесневого покрытия, легкоочищающейся керамики.

ü Биопокрытия используются в спортивном инвентаре и подшипниках.

ü Оптика как сфера применения нанотехнологии включает в себя такие направления как электрохромику, производство оптических линз. Это новая фотохромная оптика, легкоочистимая оптика и просветлённая оптика.

ü Керамика в сфере применения нанотехнологии даёт возможность получения электролюминисценции и фотолюминисценции, печатных паст, пигментов, нанопорошков, микрочастиц, мембран.

ü Компьютерная техника и электроника как сфера применения нанотехнологии даст развитие электронике, наносенсорам, бытовым (встраиваемым) микрокомпьютерам, средствам визуализации и преобразователям энергии. Далее это развитие глобальных сетей, беспроводных коммуникаций, квантовых и ДНК компьютеров.

ü Наномедицина, как сфера применения нанотехнологии, это наноматериалы для протезирования, "умные" протезы, нанокапсулы, диагностические нанозонды, имплантанты, ДНК реконструкторы и анализаторы, "умные" и прецизионные инструменты, фармацевтики направленного действия.

ü Космос как сфера применения нанотехнологии откроет перспективу для механоэлектрических преобразователей солнечной энергии, наноматериалы для космического применения.

ü Экология как сфера применения нанотехнологии это восстановление озонового слоя, погодный контроль.

Нанотехнологии в космосе

Нанотехнологии в медицине

Последние успехи нанотехнологий, по словам ученых, могут оказаться весьма полезными в борьбе с раковыми заболеваниями. Разработано противораковое лекарство непосредственно к цели - в клетки, пораженные злокачественной опухолью. Новая система, основанная на материале, известном как биосиликон. Наносиликон обладает пористой структурой (десять атомов в диаметре), в которую удобно внедрять лекарства, протеины и радионуклиды. Достигнув цели, биосиликон начинает распадаться, а доставленные им лекарства берутся за работу. Причем, по словам разработчиков, новая система позволяет регулировать дозировку лекарства.

На протяжении последних лет сотрудники Центра биологических нанотехнологий работают над созданием микродатчиков, которые будут использоваться для обнаружения в организме раковых клеток и борьбы с этой страшной болезнью.

Новая методика распознания раковых клеток базируется на вживлении в тело человека крошечных сферических резервуаров, сделанных из синтетических полимеров под названием дендримеры (от греч. dendron - дерево). Эти полимеры были синтезированы в последнее десятилетие и имеют принципиально новое, не цельное строение, которое напоминает структуру кораллов или дерева. Такие полимеры называются сверхразветвленными или каскадными. Те из них, в которых ветвление имеет регулярный характер, и называются дендримерами. В диаметре каждая такая сфера, или наносенсор, достигает всего 5 нанометров - 5 миллиардных частей метра, что позволяет разместить на небольшом участке пространства миллиарды подобных наносенсоров.

Оказавшись внутри тела, эти крошечные датчики проникнут в лимфоциты - белые кровяные клетки, обеспечивающие защитную реакцию организма против инфекции и других болезнетворных факторов. При иммунном ответе лимфоидных клеток на определенную болезнь или условия окружающей среды - простуду или воздействие радиации, к примеру, - белковая структура клетки изменяется. Каждый наносенсор, покрытый специальными химическими реактивами, при таких изменениях начнет светиться.

Чтобы увидеть это свечение, ученые  собираются создать специальное устройство, сканирующее сетчатку глаза. Лазер такого устройства должен засекать свечение лимфоцитов, когда те один за другим проходят сквозь узкие капилляры глазного дна. Если в лимфоцитах находится достаточное количество помеченных сенсоров, то для того, чтобы выявить повреждение клетки, понадобиться 15-секундное сканирование, заявляют ученые.

Здесь ожидается наибольшее влияние нанотехнологии, поскольку она затрагивает саму основу существования общества - человека. Нанотехнология выходит на такой размерный уровень физического мира, на котором различие между живым и неживым становится зыбким - это молекулярные машины. Даже вирус отчасти можно считать живой системой, поскольку он содержит в себе информацию о своём построении. А вот рибосома, хотя и состоит из тех же атомов, что и вся органика, но такой информации не содержит и поэтому является лишь органической молекулярной машиной. Нанотехнология в своём развитом виде предполагает строительство нанороботов, молекулярных машин неорганического атомного состава, эти машины смогут строить свои копии, обладая информацией о таком построении. Поэтому грань между живым и не живым начинает стираться. На сегодняшний день создан лишь один примитивный шагающий ДНК-робот.

Наномедицина  представлена следующими возможностями:

1. Лаборатории на чипе, направленная доставка лекарств в организме.

2. ДНК - чипы(создание индивидуальных лекарств).

3. Искусственные ферменты и антитела.

4. Искусственные органы, искусственные функциональные полимеры (заменители органических тканей). Это направление тесно связано с идеей искусственной жизни и в перспективе ведёт к созданию роботов обладающих искусственным сознанием и способных к самовосстановлению на молекулярном уровне. Это связано с расширением понятия жизни за рамки органического

5. Нанороботы-хирурги (биомеханизмы осуществляющие изменения и требуемые медицинские действия, распознавание и уничтожение раковых клеток). Это является самым радикальным применением нанотехнологии в медицине будет создание молекулярных нанороботов, которые смогут уничтожать инфекции и раковые опухоли, проводить ремонт повреждённых ДНК, тканей и органов, дублировать целые системы жизнеобеспечения организма, менять свойства организма.

Рассматривая отдельный атом в качестве кирпичика или "детальки" нанотехнологии ищут практические способы конструировать из этих деталей материалы с заданными характеристиками. Многие компании уже умеют собирать атомы и молекулы в некие конструкции.

В перспективе, любые молекулы будут собираться подобно детскому конструктору. Для этого планируется использовать нанороботов (наноботов). Любую химически стабильную структуру, которую можно описать, на самом деле, можно и построить. Поскольку нанобот можно запрограммировать на строительство любой структуры, в частности, на строительство другого нанобота, они будут очень дешевыми. Работая в огромных группах, наноботы смогут создавать любые объекты с небольшими затратами, и высокой точностью. В медицине проблема применения нанотехнологий заключается в необходимости изменять структуру клетки на молекулярном уровне, т.е. осуществлять "молекулярную хирургию" с помощью наноботов. Ожидается создание молекулярных роботов-врачей, которые могут "жить" внутри человеческого организма, устраняя все возникающие повреждения, или предотвращая возникновение таковых. Манипулируя отдельными атомами и молекулами, наноботы смогут осуществлять ремонт клеток. Прогнозируемый срок создания роботов-врачей, первая половина XXI века.

Это обусловлено тем, что нанотехнологии имеют большой потенциал коммерческого применения для многих отраслей, и соответственно помимо серьезного государственного финансирования, исследования в этом направлении ведутся многими крупными корпорациями.

Вполне возможно, что после усовершенствования для обеспечения "вечной молодости" наноботы уже не будут нужны или они будут производиться самой клеткой.

Для достижения этих целей человечеству необходимо решить три основных вопроса:

1. Разработать и создать молекулярных роботов, которые смогут ремонтировать молекулы.
2. Разработать и создать нанокомпьютеры, которые будут управлять наномашинами.
3. Создать полное описание всех молекул в теле человека, иначе говоря, создать карту человеческого организма на атомном уровне.

Список литературы

1. Основы объектно-ориентированного программирования в Delphi: Учеб. пособие / В. В. Кузнецов, И. В. Абдрашитова; Под ред. Т. Б. Корнеевой. – изд. 3-е, перераб. и доп. – Томск, 2008. – 120 с.

2. Киммел П. Создание приложениё в Delphi./П. Кимел – М: Вильямс, 2003. – 114с.

3. Кобаяси Н. Введение в нанотехнологию/Н. Кобаяси. – М.:Бином, 2005 - 134с

4. Чаплыгин А. «нанотехнологии в электронике» / А.Чаплыгин. - 2005 М.:техносфера

5. http://www.delphi.com

6. http://www.delphisources.ru

7. http://www.delphimaster.ru

8. http://www.nano-alife.ru

9. nanoprom.info

 

Нанотехнологии в современном мире.



Поделиться:


Последнее изменение этой страницы: 2021-02-07; просмотров: 453; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.98.13 (0.012 с.)