Сказка о термоядерной молнии, свёрнутой в кольцо 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Сказка о термоядерной молнии, свёрнутой в кольцо



 

Термоядерная реакция знакома каждому землянину, который любит погреться в солнечных лучах.

– Всем известно, что наше Солнце – это большой термоядерный реактор! – сказала Галатея.

– Да, Солнце и остальные звёзды светят миллиарды лет благодаря медленному термоядерному горению водорода и гелия в центре звёзд, – подтвердила Дзинтара.

– Как может там гореть гелий? Да и водород тоже – ведь там нет кислорода? – заинтересовалась Галатея.

– Термин «горение» в данном случае подразумевает совсем не тот огонь, который возникает в костре или камине. Вот пример термоядерной реакции: берём четыре ядра атома водорода, или четыре протона, и пытаемся сблизить их так, чтобы они соединились в одно ядро атома гелия. Если нам удастся это трудное дело, то в ходе слияния этих протонов выделится много энергии в виде гамма‑квантов и позитронов – античастиц электрона.

– А почему это дело трудное? И если мы тратим силы на это сближение, то откуда потом возникает энергия? – спросила Галатея.

– Та задаешь отличные вопросы! – похвалила Дзинтара дочь. – Почему трудно сблизить протоны? Потому что они заряжены положительно, и при их сближении, согласно закону Кулона, они начинают отталкиваться друг от друга электрическими силами.

– Но ведь можно сближать не протоны, а атомы водорода, которые нейтральны! – нашёл выход Андрей.

– В этом предложении есть рациональное зерно, но беда в том, что электроны, которые могут нейтрализовать заряд протона, располагаются далеко от него. Для превращения протонов в гелий, их надо сближать очень сильно – на расстояние гораздо меньшее, чем радиус первой электронной оболочки. На таких расстояниях нейтрализация электронами уже не работает. Если нам всё‑таки удаётся сблизить протоны на такое маленькое расстояние, то дальше вступают в дело ядерные силы притяжения – они настолько могучи, что легко преодолевают электрическое отталкивание протонов и прочно склеивают их друг с другом.

Чтобы лучше понять баланс двух сил – электростатической и ядерной, представьте себе кратер глубиной в километр – он будет аналогом потенциальной ямы ядерного притяжения – вокруг которого существует пологий вал выброшенного вещества, который будет аналогом электростатического отталкивания. Этот вал – невысокий, как холм, но если нам нужно закатить на этот холм тяжёлый шар, то придётся потрудиться. А вот с вершины вала шар сам покатится внутрь глубокого кратера, где будет сталкиваться с другими шарами и производить сильный шум – то есть испускать сильные звуковые волны, которые в нашем примере будут аналогами гамма‑квантов.

– А как Солнцу удаётся преодолеть электростатическое отталкивание протонов и запустить термоядерную реакцию? – спросил Андрей.

– Солнцу помогает его огромная масса и размер: благодаря им в центре Солнца достигается огромная температура и давление. Для термоядерной реакции в дейтериево‑тритиевой смеси должен выполняться так называемый критерий Лоусона: если взять и перемножить количество протонов в кубическом сантиметре на время удержания плазмы в секундах, то термоядерная реакция начнется, когда это произведение будет больше десяти в 14‑й степени.

– Это сколько будет в миллиардах? – спросила Галатея.

– Это будет сто тысяч миллиардов. Критерий Лоусона говорит, что для реакции вы должны создать очень плотную и горячую плазму – или плотную и очень горячую. На Земле создать солнечное давление и температуру очень непросто. Пытаться сжимать горячую плазму – это как воздушный шарик в ладонях сжимать – он где‑нибудь да вылезет маленьким пузырём. Для сжатия плазмы и удержания её в нагретом состоянии пришлось создавать специальные установки, которые должны были повторить условия на Солнце, но в сравнительно компактном объёме.

Самым перспективным термоядерным реактором оказался токамак.

Что такое токамак? Давайте рассмотрим молнию: она возникает, когда электрическая искра пробивает атмосферную толщу от земли до облака. Эта искра ионизирует воздух, создавая воздушный канал с повышенной проводимостью. По этому каналу немедленно устремляется избыток электронов, то есть у нас в воздухе возникает раскалённый шнур, по которому мчится лавина электронов. Температура внутри молнии более 20 тысяч градусов. Вокруг шнура закручивается магнитное поле, которое не даёт электронам и ионам разбредаться: оно сжимает их в тонкий жгут. Молния выполняет свою задачу по выравниванию электрических зарядов облака и земли; одновременно разогретый воздух канала расширяется и вызывает мощные звуковые волны – то есть гром, который всегда слышен после молнии, потому что звук движется медленнее света.

Теперь возьмём этот плазменный шнур молнии и свернём его в кольцо, чтобы ток не кончался, а всё время тёк по замкнутому кольцу, создавая одновременно магнитное поле, стабилизирующее кольцо.

 

 

– Так, значит, учёные решили свернуть электрического дракона в бараний рог? – покачала головой Галатея. – Смело!

– Токамак представляет собой такую свёрнутую в кольцо молнию, которая дополнительно стабилизируется мощным внешним магнитным полем, порождённым сверхпроводящими магнитами.

Токамак был придуман в 1950 году. А началась эта история в 1942 году, во время тяжёлой войны. Несмотря ни на что, университеты продолжали работать, а студенты – сдавать экзамены.

Однажды известный физик Игорь Тамм и его не менее известный коллега Михаил Леонтович принимали выпускные экзамены в Московском государственном университете. В экзаменационную аудиторию нескладной походкой зашёл высокий и худой юноша и тихим голосом представился:

– Андрей Сахаров.

Тамм и Леонтович стали экзаменовать студента по теории относительности. Андрей Сахаров отвечал, но его ответы совсем не следовали учебнику и были какими‑то не очень вразумительными. Преподаватели пожали плечами, поставили студенту тройку – и отпустили.

Ночью Тамм позвонил Леонтовичу и сказал:

– Слушай, ведь этот студент всё правильно говорил! Это мы с тобой ничего не поняли – и это нам надо тройки ставить! Нужно с ним ещё поговорить.

Так Андрей Сахаров стал учеником Игоря Тамма.

В 1950 году они выдвинули идею термоядерного реактора, в котором плазма сохранялась бы в магнитной ловушке…

– Как джинн в бутылке! – воскликнула Галатея.

– Да, только плазму оказалось легче согнуть в кольцо, чем загнать в бутылку. Так возникла идея ловушки‑бублика, или тора.

Вариантов работы термоядерных реакторов было придумано предостаточно: быстрый пинч‑разряд в плазме; ловушки с плазменным шнуром в виде восьмёрки; плазма в шаре с микроволновым излучением; испарение маленького шарика с дейтериево‑тритиевой смесью, размещённого в фокусе нескольких мощных лазеров.

Но токамак оказался самым надёжным вариантом постоянно работающей машины, поэтому по всему миру возникло множество токамаков в различных вариантах. Эти устройства помогли учёным достичь важного прогресса. Например, в 1997 году европейский токамак получил 16 мегаватт полезной энергии.

Как показали опыты, чем больше токамак, тем легче на нём достичь критерия Лоусона…

– Ну Солнце об этом давно догадалось! – фыркнула Галатея.

– …поэтому самый передовой международный реактор ИТЕР является и самым большим по размерам. Характеристики ИТЕР впечатляют: он весит 5000 тонн – вполовину веса Эйфелевой башни. Температура трития в нём достигает 150 миллионов градусов, что почти в 10 раз больше, чем в ядре Солнца.

– Наверное, плотность плазмы в этом токамаке будет не такая большая, как в центре Солнца? – догадался Андрей.

– Верно. Прогресс в термоядерной энергетике оказался очень непростым и очень дорогостоящим. Плазма в термоядерных реакторах коварна: так и норовит сбежать из магнитных ловушек. На каждый ее каприз нужно придумывать способ противодействия. Поэтому учёные всё время ищут возможности для облегчения термоядерного синтеза – и одна из возможностей перекликается с идеей Андрея: нейтрализовать ядра водорода или тритий перед синтезом.

Андрей немедленно возгордился, за что младшая сестра тут же пнула его в лодыжку. Младшие сестры должны следить за старшими братьями, чтобы те не очень заносились.

– Но электроны для этой задачи годятся плохо, поэтому возникла идея вместо электронов использовать отрицательные мюоны. Они в 207 раз тяжелее электронов, поэтому мюонная орбита располагается к ядру гораздо ближе электронной. Из‑за этого температура, необходимая для начала термоядерной реакции, сильной понижается. Действительно, облучение мюонным пучком водородной смеси позволило гораздо легче получить термоядерную реакцию. Это явление получило название мюонного катализа. Проблема в том, что получать мюоны можно только на ускорителях, они нестабильны и их нельзя хранить. Тем самым мюонный катализатор термояда оказывает дороже электричества, которое при этом производится. Так что учёным есть над чем поломать головы, прежде чем термоядерные реакторы заработают по всей земле и дадут человечеству дешёвую энергию при минимальных радиоактивных отходах.

– Не волнуйся, мама, мы поможем! – сказал Андрей, а сестра в знак согласия мотнула не ногой, а головой.

 

Примечания для любопытных

 

Михаил Александрович Леонтович (1903–1981) – видный советский физик‑теоретик, один из создателей советской школы физики плазмы. Академик АН СССР.

Андрей Дмитриевич Сахаров (1921–1989) – выдающийся советский физик‑теоретик, один из создателей водородной бомбы, академик АН СССР. Известный правозащитник и диссидент, лауреат Нобелевской премии мира за 1975 год.

Джон Лоусон (1923–2008) – видный британский инженер и учёный, получивший широко известный критерий старта термоядерной реакции (критерий Лоусона).

Окно (туннель) Гамова – частицы могут преодолевать электростатический барьер Кулона благодаря просачиванию под барьером с помощью окон или туннелей Гамова, возникающих из‑за квантово‑механических эффектов. Этот эффект был исследован выдающимся русско‑американским физиком Г. А. Гамовым, поэтому носит его имя.

Токамак – хитроумное электромагнитное устройство, мощным магнитным полем сжимающее горячую плазму в кольцо, вдоль которого течёт сильный электрический ток. Если водородную плазму в токамаке сделать достаточно горячей и плотной, то в ней начнётся термоядерная реакция.

 



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 59; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.175.113 (0.009 с.)