Вытекающая из его применения 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вытекающая из его применения



 

В предшествующем примечании мы рассмотрели, с одной стороны, определенность понятия бесконечно малого, которым пользуются в дифференциальном исчислении, с другой – основание его введения в это исчисление. И то и другое – абстрактные и потому сами по себе также и легкие определения. Так называемое применение представляет больше трудностей, равно как и более интересную сторону; элементы этой конкретной стороны составят предмет настоящего примечания. – Весь метод дифференциального исчисления дан в положении, что

dxn + nxn–1dx или (f (x + i) – fx) / i = Р, т. е. равняется коэффициенту первого члена двучлена (x+dxn) или + i)п, разложенного по степеням dx или i. Дальше нечему учиться; выведение ближайших форм, дифференциала произведения, показательной функции и т. д. получается из этой формулы механически; в короткое время, в каких‑нибудь полчаса – с нахождением дифференциалов дано также и обратное: нахождение первоначальной функции на основании дифференциалов, интегрирование – можно овладеть всей теорией. Задерживает на ней дольше лишь старание усмотреть, сделать [для себя] понятным, каким образом после того, как одна сторона (Umstand) задачи, нахождение этого коэффициента, решена так легко аналитическим, т. е. совершенно арифметическим способом, посредством разложения функции переменной величины, приобретшей через приращение форму двучлена, оказывается правильной также и другая сторона, а именно отбрасывание всех членов возникающего ряда, кроме первого. Если бы было так, что единственно лишь этот коэффициент и нужен, то после его нахождения (Bestimmung) было бы, как мы сказали, менее чем за полчаса покончено со всем, что касается теории, и отбрасывание прочих членов ряда представляло бы столь мало затруднений, что скорее о них как о членах ряда (как второй, третьей и т. д. [производной] функции их определение равным образом уже закончено с определением первого члена) вовсе и не было бы речи, так как в них совершенно нет надобности.

Можно здесь предпослать замечание, что по методу дифференциального исчисления сразу видно, что он изобретен и установлен не как нечто самодовлеющее; он не только не обоснован сам по себе, как особый способ аналитического действия, но насильственность, заключающаяся в том, что прямо отбрасываются члены, получающиеся посредством разложения функции, несмотря на то, что все это разложение признается полностью относящимся к делу – ибо дело именно и усматривается в отличии разложенной функции переменной величины (после того как ей придана форма двучлена) от первоначальной функции, – скорее совершенно противоречит всем математическим принципам. И потребность в таком образе действий, и отсутствие внутреннего его оправдания сразу же указывают на то, что его источник и основание находятся где‑то вне его. Это не единственный случай в науке, когда то, чтó ставится вначале как элементарное и из чего, как предполагают, должны быть выведены положения данной науки, оказывается неочевидным и имеющим свою причину и обоснование скорее в последующем. История возникновения дифференциального исчисления показывает, что оно имело свое начало главным образом как бы в кунштюках – в различных так называемых методах касательных; после того как образ действия был распространен и на другие предметы, он был осознан позднее и выражен в абстрактных формулах, которые теперь старались также возвысить до принципов.

Выше мы показали, что определенность понятия так называемых бесконечно малых есть качественная определенность таких количеств, которые прежде всего как определенные количества положены находящимися в отношении друг к другу, а затем в связи с этим присоединялось эмпирическое исследование, ставившее себе целью обнаружить эту определенность понятия в имеющихся описаниях или дефинициях бесконечно малого, которые берут его как бесконечно малую разность и тому подобное. – Мы это сделали лишь для того, чтобы достигнуть абстрактной определенности понятия как таковой. Дальше возникает вопрос: каков переход от нее к математической форме и ее применению. Для этой цели прежде всего нужно развить дальше теоретическую сторону, определенность понятия, которая окажется в самой себе не совсем бесплодной; затем следует рассмотреть отношение ее к применению и доказать относительно их обоих, насколько это здесь уместно, что [получающиеся] общие выводы в то же время соответствуют тому, что принадлежит к сущности дифференциального исчисления, и тому способу, каким оно достигает своей цели.

Прежде всего следует напомнить, что мы уже объяснили мимоходом ту форму, которую имеет в области математики рассматриваемая нами теперь определенность понятия. Мы показали качественную определенность количественного сначала в количественном отношении вообще; но уже при разъяснении различных так называемых видов счета (см. относящееся к этому примечание) мы, забегая вперед, указали, что именно в степеннóм отношении, которое нам предстоит еще рассмотреть в своем месте, число через приравнение моментов его понятия, единицы и численности, положено как возвратившееся к самому себе, и тем самым оно приобретает в себе момент бесконечности, для‑себя‑бытия, т. е. определяется самим собой. Ясно выраженная качественная определенность величин принадлежит, таким образом (это также было упомянуто выше), по своему существу к степенным определениям, а так как специфика дифференциального исчисления заключается в том, что оно оперирует качественными формами величин, то свойственным ему математическим предметом необходимо должно быть рассмотрение форм степеней, и все задачи и их решения, ради которых применяется дифференциальное исчисление, показывают, что интерес в них состоит единственно лишь в рассмотрении степенны´х определений как таковых.

Как ни важна эта основа и хотя она сразу же ставит на первое место нечто определенное, а не чисто формальные категории переменных, непрерывных или бесконечных величин и т. п. или только функции вообще, она все же еще слишком обща; ведь с тем же самым имеют дело и другие действия; уже возведение в степень и извлечение корня, а затем действия над показательными величинами и логарифмами, ряды, уравнения высших степеней имеют интерес и применение только к отношениям, основанным на степенях. Нет сомнения, что все они в своей совокупности составляют систему рассмотрения степеней; но ответ на вопрос, какие именно из этих отношений, в которые могут быть поставлены степенные определения, составляют собственный предмет и интерес дифференциального исчисления, должен быть почерпнут из него самого, т. е. из его так называемых применений. Последние и составляют самое суть, действительный способ действия в математическом решении того или иного круга проблем; этот способ действия существовал раньше теории или общей части, и применением оно было названо позднее лишь по отношению к созданной затем теории, которая ставила себе целью, с одной стороны, установить общий метод этого способа действия, с другой – дать ему принципы, т. е. обоснование. Какими тщетными для господствовавшего до сих пор понимания этого способа действия были старания найти принципы, которые действительно разрешили бы выступающее здесь противоречие, а не оправдывали бы или не прикрывали бы его ссылкой на незначительность того, что согласно математическому способу действия хотя и необходимо, но здесь должно быть отброшено, или ссылкой на сводящуюся к тому же самому возможность бесконечного или какого угодно приближения и т. п., – это мы показали в предыдущем примечании. Если бы общая основа (das Allgemeine) этого способа действия была абстрагирована из действительной части математики, именуемой дифференциальным исчислением, иначе, чем это делалось до сих пор, то эти принципы и занятие ими оказались бы столь же излишними, сколь они в самих себе оказываются чем то неправильным и постоянно противоречивым.

Если будем доискиваться этой специфики, просто обозревая то, что имеется в этой части математики, то мы найдем в качестве ее предмета α) уравнения, в которых какое угодно число величин (мы можем здесь ограничиться вообще двумя) связано в одно целое определенности так, что эти величины, во‑первых, имеют свою определенность в эмпирических величинах как твердых пределах, а затем в такой же связи и с последними, и между собой, как это вообще имеет место в уравнениях; но так как здесь имеется лишь одно уравнение для обеих величин (если величин более двух, то и число уравнений соответственно увеличивается, но всегда оно будет меньше числа величин), то это уравнения неопределенные. Во‑вторых, они связаны так, что одна из сторон [уравнения], сообщающая этим величинам их определенность, заключается в том, что они (по крайней мере одна из них) даны в уравнении в более высокой степени, чем первая степень.

Относительно этого мы прежде всего должны сделать несколько замечаний. Во‑первых, величины, взятые со стороны первого из указанных выше определений, носят всецело характер лишь таких переменных величин, какие встречаются в задачах неопределенного анализа. Их значение неопределенно, но так, что если одна получает откуда‑то извне совершенно определенное значение, т. е. числовое значение, то и другая становится определенной; таким образом, одна есть функция другой. Поэтому категории переменных величин, функций и тому подобное, как уже сказано выше, только формальны для специфической определенности величин, о которой здесь идет речь, так как присущая им общность еще не содержит того специфического, чтó составляет весь интерес дифференциального исчисления и чтó нельзя объяснить из нее при помощи анализа; они сами по себе простые, незначительные, легкие определения, которые делаются трудными только тогда, когда вкладывают в них то, чего в них нет, для того чтобы иметь затем возможность вывести его из них, а именно вкладывают специфическое определение дифференциального исчисления. – Что касается, далее, так называемой константы, то о ней можно заметить, что она прежде всего безразличная эмпирическая величина, имеющая для переменных величин определяющее значение лишь по своему эмпирическому определенному количеству, как предел их минимума и максимума; но способ соединения констант с переменными величинами сам составляет один из моментов для природы частной функции, которую образуют эти величины. Но и наоборот, сами константы также функции. Поскольку, например, прямая линия имеет значение параметра параболы, это ее значение состоит в том, что она функция y2/x; так же как в разложении двучлена вообще константа как коэффициент первого члена ряда есть сумма корней, как коэффициент второго члена – сумма их произведений по два и т. д., стало быть, эти константы суть здесь вообще функции корней. Там, где в интегральном исчислении константа определяется из данной формулы, она трактуется как ее функция. Эти коэффициенты мы рассмотрим далее и в другом определении как функции, конкретное значение которых составляет весь [их] интерес.

Но то характерное, которым рассмотрение переменных величин в дифференциальном исчислении отличается от их свойства в неопределенных задачах, мы должны видеть в том, что по крайней мере одна из этих величин или даже все они имеют степень выше первой, причем опять‑таки безразлично, все ли они имеют одну и ту же высшую степень или они имеют неодинаковую степень; специфическая неопределенность, которую они здесь имеют, состоит единственно лишь в том, что они функции друг друга в таком степеннóм отношении. Благодаря этому изменение переменных величин детерминировано качественно и, стало быть, оно непрерывно, и эта непрерывность, которая сама по себе есть опять‑таки лишь формальная категория некоторого тождества вообще, некоторой определенности, сохраняющейся в изменении, остающейся равной себе, имеет здесь свой детерминированный смысл, и притом единственно лишь в степеннóм отношении, которое не имеет своим показателем никакого определенного количества и составляет не‑количественную, сохраняющуюся определенность отношения переменных величин. Поэтому следует возразить против формализма другого рода, что первая степень есть степень лишь в отношении к более высоким степеням; сам по себе х есть лишь какой‑то неопределенный квант. Поэтому нет смысла дифференцировать само по себе уравнение у= ах +b, прямой линии, или s=ct, уравнение просто равномерной скорости. Если из у=ах или же из у=ах+b получается а = dy/dx или из s = ct получается ds/dt = c то в такой же мере определением тангенса будет а = y/x или определением просто равномерной скорости s/t = с. Последняя выражается через dy/dx в связи с тем, что выдается за разложение [в ряд] равномерно ускоренного движения. Но что в системе такого движения встречается момент простой, просто равномерной скорости, т. е. не определенной высшей степенью одного из моментов движения, – это само есть, как отмечено выше, неосновательное допущение, опирающееся единственно лишь на рутину метода. Так как метод исходит из представления о приращении, получаемом переменной величиной, то, конечно, приращение может получить и такая переменная величина, которая есть лишь функция первой степени; если же после этого, чтобы найти дифференциал, берут отличие возникшего таким образом второго уравнения от данного, то сразу же обнаруживается бесполезность действия: уравнение, как мы уже заметили, до и после этого действия остается для так называемых приращений тем же, чтó и для самих переменных величин.

ß) Сказанным определяется природа подлежащего действию уравнения, и теперь необходимо показать, какой интерес преследует это действие. Такое рассмотрение может нам дать лишь знакомые уже результаты, какие по своей форме имеются особенно в понимании этого предмета Лагранжем; но я придал изложению совершенно элементарный характер, чтобы устранить примешавшиеся сюда чужеродные определения. – Основой для действий над уравнением указанного вида оказывается то, что степень внутри самой себя понимается как отношение, как система определений отношения. Степень, указали мы выше, есть число, поскольку его изменение определено им же самим, его моменты, единица и численность, тождественны, – полностью, как мы выяснили ранее, прежде всего в квадрате, более формально (что не составляет здесь разницы) – в более высоких степенях. Степень, ввиду того что она как число (хотя бы и предпочитали термин величина как более общее, она в себе всегда есть число) есть множество и тогда, когда она изображена как сумма, может прежде всего быть разложена внутри себя на любое множество чисел, которые и относительно друг друга, и относительно их суммы имеют только то определение, что они все вместе равны этой сумме. Но степень может быть также разложена на сумму таких различий, которые определены формой степени. Если степень принимается за сумму, то как сумму понимают и ее основное число, корень, и оно может быть как угодно разложено, но это разнообразие разложения есть безразличное эмпирически количественное (Quantitative). Сумма, каковой должен быть корень, сведенная к своей простой определенности, т. е. к своей истинной всеобщности, есть двучлен; всякое дальнейшее увеличение числа членов есть не более как повторение того же определения и потому нечто пустое[42]. Важна здесь, стало быть, только качественная определенность членов, которая получается посредством возведения в степень корня, принимаемого за сумму; эта определенность заключается единственно лишь в изменении – в возведении в степень. Эти члены суть, следовательно, всецело функции возведения в степень и [самой] степени. Такое изображение числа как суммы множества таких членов, которые суть функции возведения в степень, а затем интерес – найти форму таких функций и, далее, эту сумму из множества таких членов, поскольку это нахождение должно зависеть только от указанной формы, – все это составляет, как известно, особое учение о рядах. Но при этом нам важно выделить еще другой интерес, а именно отношение самой лежащей в основе величины (определенность которой, поскольку она некоторый комплекс, т. е. в данном случае уравнение, заключает в себе некоторую степень) к функциям ее возведения в степень. Это отношение, совершенно абстрагированное от названного выше интереса [нахождения] суммы, окажется вытекающей из действительной науки позицией (Gesichtspunkt) как единственной, имеющейся в виду дифференциальным исчислением.

Однако сначала нужно прибавить к сказанному еще одно определение или, вернее, устранить из сказанного одно заключающееся в нем определение. А именно, мы сказали, что переменная величина, в определение которой входит степень, рассматривается внутри ее самой как сумма и притом как система членов, поскольку последние суть функции возведения в степень, почему и корень рассматривается как сумма, а в своей просто определенной форме – как двучлен; хп= (у+ z)n= (y + nyn–1z +…). Для разложения степени в ряд, т. е. для получения функций возведения в степень, эта формула исходила из суммы как таковой; но здесь дело не идет ни о сумме как таковой, ни о происходящем из нее ряде, а от суммы дóлжно брать только соотношение. Соотношение величин как таковое есть то, чтó, с одной стороны, остается после абстрагирования от plus некоторой суммы как таковой, и чтó, с другой стороны, требуется для нахождения функций, получающихся в результате разложения в степеннóй ряд. Но такое соотношение уже определено тем, что здесь предмет есть уравнение, что ут=ахп также есть уже комплекс нескольких (переменных) величин, содержащий их степеннóе определение. В этом комплексе каждая из этих величин всецело положена как находящаяся в соотношении с другой со значением, можно было бы сказать, некоторого plus в ней самой – положена как функция прочих величин; их свойство быть функциями друг друга сообщает им это определение plus, но именно этим – определение совершенно неопределенного plus, а не приращения, инкремента и т. п. Мы, однако, могли бы также оставить без внимания этот абстрактный исходный пункт; можно совершенно просто ограничиться тем, что после того как переменные величины даны в уравнении как функции друг друга, так что эта определенность заключает в себе отношение степеней, теперь сравниваются между собой также и функции возведения в степень каждой из них. – Каковые вторые функции определены не чем иным, как самим возведением в степень. Можно сначала выдавать за желание или возможность сведение степенного уравнения переменных величин к отношению функций, получающихся в результате их разложения в ряд; лишь дальнейшая цель, польза, применение должны указать пригодность такого его преобразования; эта перестановка и вызвана единственно лишь ее полезностью. Если выше мы исходили из изображения этих степенных определений на примере такой величины, которая как сумма принимается за различенную внутри себя, то это, с одной стороны, служило лишь для того, чтобы указать, какого вида эти функции, с другой – в этом заключается способ их нахождения.

Мы имеем перед собой, таким образом, обычное аналитическое разложение в ряд, понимаемое для целей дифференциального исчисления так, что переменной величине дается приращение dx, i, а затем степень двучлена разлагается в соответствующий ряд. Но так называемое приращение должно быть не определенным количеством, а лишь формой, все значение которой сводится к тому, чтобы быть вспомогательным средством разложения в ряд. Стремятся же в этом случае – по признанию, определеннее всего выраженному Эйлером и Лагранжем и подразумеваемому в ранее упомянутом представлении о пределе, – лишь к получающимся при этом степенны´м определениям переменных величин, к так называемым коэффициентам (эти коэффициенты суть, правда, коэффициенты приращения и его степеней, которые определяют последовательность ряда и к которым относятся различенные коэффициенты). При этом можно отметить, что так как приращение, не имеющее определенного количества, принимается лишь для целей разложения в ряд, то было бы всего уместнее обозначить его цифрой 1 (единицей), потому что приращение всегда встречается в разложении только как множитель, а множитель «единица» как раз и достигает той цели, чтобы приращение не приводило к какой‑либо количественной определенности и к какому‑либо количественному изменению, dx же, обремененное ложным представлением о некоторой количественной разности, и другие знаки, как, например, i, обремененные бесполезной здесь видимостью всеобщности, всегда выглядят как определенное количество и его степени и притязают на то, чтобы быть таковыми; это притязание приводит к стремлению, несмотря на это, избавиться от них, отбросить их. Для сохранения формы ряда, развернутого по степеням, можно было бы с таким же успехом присоединять обозначения показателей как indices к единице. Но и помимо этого необходимо абстрагироваться от ряда и от определения коэффициентов по месту, которое они занимают в ряде: отношение между всеми ими одно и то же; вторая функция – производная от первой, точно так же как первая – от первоначальной, и для той, которая по счету вторая, первая производная функция есть в свою очередь первоначальная. По существу же своему интерес составляет не ряд, а единственно лишь получающееся в результате разложения в ряд степеннóе определение в своем отношении к непосредственной для него величине. Стало быть, вместо того чтобы считать это определение коэффициентом первого члена разложения, было бы предпочтительнее (так как каждый член обозначается как первый относительно следующих за ним членов ряда, а такая степень в качестве степени приращения, как и сам ряд, не относится сюда) употреблять простое выражение «производная степеннáя функция», или, как мы сказали выше, «функция возведения величины в степень», причем предполагается, что известно, каким образом производная берется как заключенная внутри некоторой степени разложения.

Но если в этой части анализа собственно математическое начало есть не что иное, как нахождение функции, определенной через разложение в степеннóй ряд, то возникает еще один вопрос: что делать с полученным таким образом отношением, каково применение его и пользование им, или [вопрос]: действительно, для какой цели ищут такие функции? Дифференциальное исчисление вызвало к себе большой интерес именно тем, что оно находило такие отношения в конкретных предметах, сводимых к этим абстрактным аналитическим отношениям.

Но относительно применимости из самой природы вещей в силу вскрытого выше характера моментов степени само собой вытекает прежде всего следующее, еще до того, как будет сделан вывод из случаев применения. Разложение в ряд степенны´х величин, посредством которого получаются функции их возведения в степень, если абстрагироваться от более точного определения, отличается прежде всего вообще тем, что величина понижается на одну степень. Такое действие, следовательно, находит применение в таких предметах, в которых также имеется такое различие степенны´х определений. Если будем иметь в виду пространственную определенность, то найдем, что она содержит те три измерения, которые мы, чтобы отличить их от абстрактных различий высоты, длины и ширины, можем обозначить как конкретные измерения, а именно линию, поверхность и целокупное пространство; а поскольку они берутся в их простейших формах и в соотношении с самоопределением и, стало быть, с аналитическими измерениями, то мы получаем прямую линию, плоскостную поверхность (и ее же как квадрат) и куб. Прямая линия имеет эмпирическое определенное количество, но с плоскостью появляется то, что обладает качеством, степеннóе определение; более детальные видоизменения, например то, что это происходит уже и с плоскими кривыми, мы можем оставить без рассмотрения, поскольку здесь дело идет прежде всего о различии лишь в общем виде. Тем самым возникает также потребность переходить от более высокого степеннóго определения к низшему и наоборот, поскольку, например, линейные определения должны быть производными от данных уравнений поверхности и т. п. или наоборот. – Далее, движение, в каковом дóлжно рассматривать количественное отношение пройденного пространства и соответствующего протекшего времени, обнаруживается в различных определениях просто равномерного, равномерно ускоренного, попеременно равномерно ускоренного и равномерно замедленного – возвращающегося в себя движения; так как эти различенные виды движения выражены через количественные отношения их моментов, пространства и времени, то для них получаются уравнения с различными степенными определениями, а поскольку может явиться потребность определить некоторый вид движения или же пространственные величины, с которыми связан данный вид [движения], посредством другого вида движения, это действие равным образом приводит к переходу от одной степеннóй функции к другой, высшей или низшей. – Этих двух примеров достаточно для той цели, для которой они приведены.

Видимость случайности, представляемая дифференциальным исчислением в разном его применении, упростилась бы уже пониманием природы сфер применения и специфической потребности и условия этого примепения. Но в самих этих сферах важно далее знать, между какими частями предметов математической задачи имеет место такое отношение, которое специфически полагается дифференциальным исчислением. Пока что мы сразу должны заметить, что при этом нужно принимать во внимание двоякого рода отношения. Действие понижения степени уравнения, рассматриваемое со стороны производных функций его переменных величин, дает результат, который в самом себе поистине есть уже не уравнение, а отношение. Это отношение составляет предмет собственно дифференциального исчисления. Но именно поэтому, во‑вторых, здесь имеется также отношение самого более высокого степеннóго определения (первоначального уравнения) к низшему (производной функции). Это второе отношение мы должны оставить пока без внимания; впоследствии оно окажется предметом, характерным для интегрального исчисления.

Рассмотрим сначала первое отношение и для определения момента, в котором заключается интерес действия (это определение должно быть заимствовано из сферы так называемого применения), возьмем простейший пример кривых, определяемых уравнением второй степени. Как известно, отношение координат в степеннóм определении дано непосредственно уравнением. Следствиями основного определения являются определения других связанных с координатами прямых линий: касательной, подкасательной, нормали и т. п. Но уравнения между этими линиями и координатами суть линейные уравнения; те целые, в качестве частей которых определены указанные линии, – это прямоугольные треугольники, составленные прямыми линиями. Переход от основного уравнения, содержащего степеннóе определение, к этим линейным уравнениям содержит указанный выше переход от первоначальной функции, т. е. от той функции, которая есть уравнение, к производной функции, которая есть отношение и притом отношение между теми или иными содержащимися в кривой линиями. Связь между отношением этих линий и уравнением кривой и есть то, чтó требуется найти.

Небезынтересно отметить относительно истории [дифференциального исчисления], что первые открыватели умели указать найденное ими решение лишь всецело эмпирически, не будучи в состоянии объяснить само действие, оставшееся совершенно внешним. Я ограничиваюсь здесь указанием на Барроу, учителя Ньютона. В своих Lect. opt. et geom., в которых он решает задачи высшей геометрии по методу неделимых, отличающемуся прежде всего от того, что составляет особенность дифференциального исчисления, он излагает также свой метод определения касательных, «так как на этом настаивали его друзья» (lect. X). Нужно прочесть у него самого, как он решает эту задачу, чтобы составить надлежащее представление о том, каким образом этот метод дан как совершенно внешнее правило – в том же стиле, как в учебниках арифметики прежде излагалось тройное правило или, еще лучше, так называемая проба арифметических действий девяткой. Он чертит те маленькие линии, которые впоследствии были названы [бесконечно малыми] приращениями в характеристическом треугольнике кривой, и затем в виде простого правила предписывает отбросить как излишние те члены, которые в ходе развертывания уравнения выступают как степени указанных приращений или как произведения (etenim isti termini nihilum valebunt) {50}, а также следует отбросить те члены, которые содержат величины, определяемые лишь на основе первоначального уравнения (последующее вычитание первоначального уравнения из уравнения, составленного вместе с приращениями), и, наконец, заменить приращение ординаты самой ординатой и приращение абсциссы – подкасательной. Нельзя, если позволительно так выразиться, изложить способ более школьно‑педантически; последняя подстановка – это допущение пропорциональности приращений ординаты и абсциссы ординате и подкасательной, сделанное в обычном дифференциальном методе основой определения касательной; в правиле Барроу это допущение выступает во всей своей наивной наготе. Был найден простой способ определения подкасательной; приемы Роберваля {51} и Ферма сводятся к чему‑то сходному – метод нахождения наибольших и наименьших значений, из которого исходил Ферма, покоится на тех же основаниях и на том же образе действия. Математической страстью того времени было находить так называемые методы, т. е. указанного рода правила, и притом делать из них секрет, чтó было не только легко, но в некотором отношении даже нужно, и нужно по той же причине, почему это было легко, а именно потому, что изобретатели нашли лишь эмпирически внешнее правило, а не метод, т. е. не то, что выведено из признанных принципов. Подобные так называемые методы Лейбниц воспринял от своего времени; Ньютон также воспринял их от своего времени, а непосредственно – от своего учителя; обобщением их формы и их применимости они проложили новые пути в науках, но, занимаясь этим, они чувствовали также потребность освободить образ действия от формы чисто внешних правил и старались дать ему надлежащее обоснование.

Анализируя метод более подробно, мы увидим, что истинный ход действия в нем таков. Во‑первых, степенные определения (разумеется, переменных величин), содержащиеся в уравнении, низводятся до их первых функций. Но этим меняется значение членов уравнения. Поэтому уже нет уравнения, а возникло лишь отношение между первой функцией одной переменной величины и первой функцией другой. Вместо рх = у2 мы имеем р: 2у или вместо 2 ах – х2 = у 2 имеем а – х: у, чтó впоследствии стали обычно обозначать как отношение dy/dx. Уравнение есть уравнение кривой, а это отношение, целиком зависящее от него и производное (выше – согласно одному лишь правилу) от него, есть, напротив, линейное отношение, которому пропорциональны определенные линии; р: 2 у или а – х: у сами суть отношения прямых линий кривой, а именно отношения координат и параметра; но этим мы еще ничего не узнали. Мы хотим знать о других встречающихся в кривой линиях, что им присуще указанное отношение, хотим найти равенство двух отношений. – Следовательно, вопрос, во‑вторых, состоит в том, какие прямые линии, определяемые природой кривой, находятся в таком отношении? – Но это то, чтó уже ранее было известно, а именно, что такое полученное указанным путем отношение есть отношение ординаты к подкасательной. Древние нашли это остроумным геометрическим способом; изобретатели же нового времени открыли лишь эмпирический способ, как придать уравнению кривой такой вид, чтобы получилось то первое отношение, о котором уже было известно, что оно равно отношению, содержащему ту линию (здесь – подкасательную), которая подлежит определению. Отчасти это придание уравнению желаемого вида было задумано и проведено методически – дифференцирование, – отчасти же были изобретены воображаемые приращения координат и воображаемый, образованный из этих приращений и такого же приращения касательной характеристический треугольник, дабы пропорциональность отношения, найденного путем понижения степени уравнения, вместе с отношением ординаты и подкасательной была представлена не как нечто эмпирически взятое лишь из давно знакомого, а как нечто доказанное. Однако это давно знакомое оказывается вообще (а наиболее очевидно в указанной выше форме правил) единственным поводом и соответственно единственным основанием для допущения характеристического треугольника и указанной пропорциональности.



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 65; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.231.155 (0.014 с.)