Гомополимеры. Сополимеры. Стереоизомеры 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Гомополимеры. Сополимеры. Стереоизомеры



Г. Каменск-Уральский

2020

СОДЕРЖАНИЕ

 

ВВЕДЕНИЕ. 3

1. СОСТАВ И КЛАССИФИКАЦИЯ ПЛАСТМАСС.. 5

1.1 Пластмассы и их свойства. 5

1.2 Термопласты и их классификация. 6

1.3 Реактопласты и их свойства. 11

1.4 Методы обработки пластмасс. 13

2. ХАРАКТЕРИСТИКА ФТОРОПЛАСТОВ И КАПРОЛОНА.. 16

2.1 Фторопласты и их свойства. 16

2.2 Капролон (полиамид 6 блочный) 19

ЗАКЛЮЧЕНИЕ. 25

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ.. 26

ПРИЛОЖЕНИЯ.. 27


ВВЕДЕНИЕ

 

Объективные потребности развития различных отраслей техники обусловили создание новых конструкционных материалов с высокой прочностью и большими значениями модуля упругости на металлической, керамической и полимерной основах. Неумолимые законы природы диктуют необходимость резкого увеличения прочностных характеристик изделий про минимизации их массы. Это стало возможным при изготовлении композиционных материалов на полимерной основе (композитов)

Понятие неметаллические материалы включает большой ассортимент материалов таких, как пластические массы, композиционные материалы, резиновые материалы, клеи, лакокрасочные покрытия, древесина, а также силикатные стекла, керамика и др. Неметаллические материалы являются не только заменителями металлов, но и применяются как самостоятельные, иногда даже незаменимые материалы. Отдельные материалы обладают высокой механической прочностью, легкостью, термической и химической стойкостью, высокими электроизоляционными характеристиками, оптической прозрачностью и т. п. Особо следует отметить технологичность неметаллических материалов.

Основой неметаллических материалов являются полимеры, главным об­разом синтетические. Создателем структурной теории химического строе­ния органических соединений является великий русский химик А. М. Бут­леров. Промышленное производство первых синтетических пластмасс (фено­пластов) явилось результатом глубоких исследований, проведенных Г. С. Пет­ровым (1907—1914 гг.). Блестящие исследования позволили С. В. Лебе­деву впервые в мире осуществить промышленный синтез каучука (1932 г.). Н. Н. Семеновым разработана теория цепных реакций (1930—1940 гг.) и распространена на механизм цепной полимеризации.

Успешное развитие химии и физики полимеров связано с именами видных ученых: П. П.. Кобеко, В. А. Каргина, А. П. Александрова, С. С. Медведева, С. Н. Ушакова, В. В. Коршака и др. Важный вклад внесен К. А. Андриановым в развитие химии кремнийорганических полимеров, широко применяемых в качестве термостойких материалов.

Применение неметаллических материалов обеспечивает значительную экономическую эффективность.  Все вышеперечисленные факторы и обусловили актуальность нашего исследования.

Целью работы является анализ применения неметаллических материалов в машиностроении

В соответствии с поставленной целью решались следующие основные задачи:

-изучить свойства пластмасс;

-рассмотреть термопласты и их классификацию;

- определить свойства реактопластов;

- изучить методы обработки пластмасс;

- определить свойства фторопластов;

- рассмотреть характеристики капролона.

Методы исследования:

- обработка, анализ научных источников;

- анализ научной литературы, учебников и пособий по исследуемой проблеме.

Объект исследования – неметаллические материалы

Предмет исследования – применение неметаллических материалов в машиностроении

 


1. СОСТАВ И КЛАССИФИКАЦИЯ ПЛАСТМАСС

 

1.1 Пластмассы и их свойства

 

Пластмассы различных видов нашли широкое применение в машиностроении благодаря своим высоким антикоррозионным и механическим свойствам. Детали, изготовленные из пластмасс, имеют хороший внешний вид, блестящую гладкую поверхность различных цветов.

Пластмассы это ма­териалы способны при нагревании размягчаться, становиться пластичны­ми, и тогда под давлением им можно придать заданную форму, которая затем сохраняется. В зависимости от природы связующего переход отфор­мованной массы в твердое состояние совершается или при дальнейшем ее нагревании, или при последующем охлаждении.

Пластмассы состоят из связующего вещества и наполнителя. Связующими служат смолы, а наполнителем различные вещества: древесная мука, волокнистые материалы, обрезки или листы бумаги, ткани и т.п.

Другим важным компонентом пластмасс является наполнитель (порош­кообразные, волокнистые и другие вещества как органического, так и неор­ганического происхождения). После пропитки наполнителя связующим по­лучают полуфабрикат, который спрессовывается в монолитную массу. Наполнители повышают механическую прочность, снижают усадку при. прессовании и. придают материалу те или иные специфические свойства (фрикционные, антифрикционные и т. д.). Для повышения пластичности в полуфабрикат добавляют пластификаторы (органические вещества с вы­сокой температурой кипения и низкой температурой замерзания, например олеиновую кислоту, стеарин, дибутилфталат и др.). Пластификатор сооб­щает пластмассе эластичность, облегчает ее обработку. Наконец, исходная композиция может содержать отвердители (различные амины) или катализаторы (перекисные соединения) процесса отверждения термореактивных связующих, ингибиторы, предохраняющие полуфабрикаты от их само­произвольного отверждения, а также красители (минеральные пигменты и спиртовые растворы органических красок, служащие для декоративных целей) [1].

Различают два основных вида пластмасс: термопластичные и термореактивные.

К термопластичным материалам или термопластам (thermoplast) относятся полимеры, которые при нагревании в процессе переработки переходят из твердого агрегатного состояния в жидкое: высокоэластическое или вязкотекучее (литьевые термопласты переходят в вязкотекучее состояние). При охлаждении материала происходит обратный переход в твердое состояние. Поведение при нагревании отличает термопласты от термореактивных материалов или реактопластов (thermoset), которые отверждаются при переработке и не способны далее переходить в жидкое агрегатное состояние.

 

1.2 Термопласты и их классификация

 

В зависимости от принимаемых фазовых состояний термопластичные материалы делятся на аморфные и кристаллические (точнее кристаллизующиеся). В кристаллизующихся литьевых термопластах всегда сохраняется какая-то доля незакристаллизованного (аморфного) материала, поэтому эти материалы иногда называют частично-кристаллическими. Некоторые материалы (PC), в принципе способные к кристаллизации, не кристаллизуются при литье под давлением, оставаясь аморфными. Есть материалы, которые могут быть аморфными или кристаллизоваться в зависимости от условий литья. Другие- очень сильно меняют степень кристалличности и свойства при изменении технологического режима.

Способность к кристаллизации - очень важное свойство материалов, определяющее их поведение при переработке, и которое обязательно должно учитываться при конструировании изделий и пресс-форм и выборе технологического режима литья. Кристаллизующиеся материалы имеют высокий уровень усадки и анизотропии усадки (разница продольной и поперечной усадки). Пигменты и другие добавки, действуя как нуклеаторы (зародышеобразователи кристаллизации), могут значительно изменять структуру и свойства кристаллизующихся материалов.

В зависимости от температуры аморфные термопласты имеют 3 физических состояния: стеклообразное, высокоэластическое и вязкотекучее.
Для стеклообразного состояния характерны небольшие упругие деформации. Переход из высокоэластического состояния в стеклобразное происходит в некотором диапазоне температур, центр которого называют температурой стеклования Tc (glass transition temperature, Tg). В зависимости от метода определения температура стеклования может значительно изменяться. При повышении температуры стекловании повышается температура эксплуатации аморфного материала [10].

Полимер в высокоэластическом состоянии способен к большим обратимым деформациям, достигающим сотен и более %. При повышении температуры литьевой термопластичный материал переходит из высокоэластического состяния в вязкотекучее. Температура такого перехода называется температурой текучести Тт. Выше температуры текучести в полимере проявляются необратимые деформация вязкого течения. При нагревании амофного материала обычно визуально наблюдается нефазовый переход, напоминающий процесс плавления для кристаллизующихся термопластов. Температуру такого перехода условно называют температурой плавления (melting temperature, Tm) аморфного материала.

В кристаллизующихся термопластах аморфная фаза может приобретать описанные выше физические состояния. При нагревании кристаллическая фаза плавится. Температура этого фазового перехода называется температурой плавления Тпл (melting temperature, Tm). Свойства кристаллизующихся полимеров зависят от содержания кристаллической фазы и от того, в каком физическом состоянии (стеклообразном или высокоэластическом) находится при температуре эксплуатации аморфная фаза.

Классификация термопластов по эксплуатационным свойствам

Литьевые термопластичные материалы делят на несколько групп в зависимости от уровня эксплуатационных свойств. К таким свойствам прежде всего относится температура долговременной эксплуатации.
Пластмассы достаточно условно делят на группы (в различных изданиях приводятся разные критерии классификации):

- Материалы общего назначения или общетехнического назначения (general purpose plastics);

- Конструкционные пластмассы или пластмассы инженерно-технического назначения (engineering plastics);

- Суперконструкционные (super-engineering plastics) или высокотермостойкие полимеры (high temperature plastics).

Среди термопластов выделяют особую группу термопластичных эластомеров или термоэластопластов (TPE), которые по технологическим свойствам являются обычными термопластами, а по эксплуатационным подобны каучукам и резинам, т.е. способны к большим обратимым деформациям. В зависимости от температуры долговременной эксплуатации термоэластопласты также подразделяют на материалы общего назначения (general purpose TPE) и инженерно-технического назначения (engineering TPE).


Классификация термопластов по химической структуре

По химическому строению многочисленные литьевые термопластичные материалы обычно подразделяют на несколько групп (классов). Современная промышленность выпускает большое количество типов полиолефинов (PO), важнейшими из которых являются группы полиэтиленов (PE) и полипропиленов (PP). Многочисленные типы материалов представлены в группах стирольных пластиков (PS), полиамидов (PA), сложных полиэфиров (polyester)[6].
Традиционно выделяют группы полимеров на основе целлюлозы (cellulosic plastics), фторполимеров или фторопластов (fluoro plastics). Изготовители акриловых полимеров или акрилатов (acrylic) часто указывают только принадлежность материала к данной группе и не приводят тип материала.

Рис.2.1 Эффективность капролона по сравнению с металлом

 

 

1 – Масса

2 – Материалоемкость

3 - Трудоемкость изготовления

4 – Стоимость

5 - Износ вала

6 - Срок службы изделия

Физико-механические и эксплуатационные свойства капролона представлены в приложении 2.

 

 

В мировом производстве и потреблении конструкционных материалов доля пластмасс продолжает увеличиваться. Высокая степень роста темпов потребления особенно характерна для полиамидов. По таким характеристикам, как прочность, коррозионная стойкость, легкость, они успешно конкурируют с металлами и стеклом в автомобилестроении. В отраслях, связанных с электричеством и электроникой, огнестойкий полиамид продолжает вытеснять дорогостоящий полипропиленсульфид и полибутилентерефталат[20].

Многофункциональный материал конструкционного и антифрикционного назначения - полиамид 6 блочный (капролон) обладает высокими прочностными и эксплуатационными свойствами, имеет низкий коэффициент трения в паре с любыми металлами, хорошо обрабатывается фрезерованием, точением, сверлением и шлифованием. Полиамид 6 блочный (капролон) в 6-7 раз легче бронзы и стали, взамен которых он успешно применяется. Изделия из капролона обеспечивают надежную и бесшумную работу устройств и механизмов, как правило, в 1,5-2 раза снижают износ пар трения, повышая их ресурс.

Полиамид 6 блочный (капролон) не подвержен коррозии, экологически чист, имеет санитарно--эпидемиологическое заключение на контакт с пищевыми продуктами. Полиамид 6 блочный (капролон) устойчив к воздействиям углеводов, масел, спиртов, кетонов, эфиров, щелочей и слабых кислот. Растворяется в крезолах, фенолах, концентрированных минеральных кислотах, муравьиной и уксусной кислотах.


Применение

Полиамид 6 блочный (капролон) широко применяют взамен цветных металлов (бронзы, латуни, баббита) и различных антифрикционных материалов (резины, бакаута, текстолита, лигнофоля, ДСП и т.д.), а также в качестве электроизоляционного и конструкционного материала в различных отраслях народного хозяйства:

В судостроении и судоремонте. Полиамид 6 блочный (капролон) применяется для изготовления подшипников гребных и дейдвудных валов, рулевых и других устройств, веерных роликов, деталей судовых механизмов и арматуры - клапанов, поршней, слабо нагруженных шестерен, крыльчаток насосов, корпусов и крышек клапанов, букс, пробок, крышек, уплотнительных колец.

В энергетике - идет на изготовление подшипников насосов, шнеков золоудаления и питания, пылевых шнеков, шаровых мельниц Ш-10,12, турбинных вкладышей и др. для ТЭЦ, ГЭС, ГРЭС, АЭС.

Горнорудная и золотодобывающая промышленность использует полиамид 6 блочный (капролон) в качестве сферических подшипников, конических и цилиндрических подшипников в камнедробилках КМД 1750.КМД2200.

В угледобывающей промышленности из полиамида 6 блочного (капролона) изготавливают втулки центральной цапфы, опорного, натяжного и ведущего колеса, разгрузочного блока, механизма качения, резального барабана, блока наводки, вкладыши седлового подшипника и др.

Нефтедобывающая промышленность использует полиамид в качестве протекторных переводчиков на буровых стенках как приспособление против протирания колонны в процессе бурения скважин, подшипников различных насосов, скребков-центраторов насосных штанг, решеток для вакуум-фильтров.

Водоканализационное хозяйство - подшипники насосов подкачки воды, крылатки, детали различных устройств.

В металлургической промышленности полиамид 6 блочный (капролон) используется для изготовления деталей прокатных станов. Пищевая промышленность. Спектр применения полиамида 6 блочного (капролона) в этой отрасли народного хозяйства необычайно широк. Из него делают шаровые клапаны в системах подачи, подшипники, ролики, шестерни в системах разлива. Например:

Разливочно-укупорочные аппараты - роликовые опоры штока, шнеки, звездочки 7-и,12-ти и 14-лучевые, шестерни 12-лучевые, колокольчики, подшипники скольжения, втулки.

Этикеточные машины-шестерни, звездочки, плита отбойная, ребра, пробка (направление), пробка (шнек).

Транспортеры, рольганги - ролики, подшипники скольжения. Автоматы для производства макарон, мороженого, мясного фарша, кондитерских изделий, пельменей - фильеры, шнеки, выталкивающие барабаны, штампы, зубчатые и червячные колеса, втулки. Оборудование для переработки мяса - разделочные (обвалочные) доски, ролики, подшипники. Закаточные машины - валики [22].

Сепараторы, насосы - уплотнительные кольца, манжетодержатели, подшипники скольжения.

Тележки, вагонетки - вкладыши упорных и направляющих колес, колеса и ступицы колес, ролики.

Кран-балки, краны - колеса кран-балок, вкладыши упорных и направляющих колес тяговых тросов, ролики, колеса с шарикоподшипниками, обоймы. Капролон успешно применяется взамен шарикоподшипников, работающих в агрессивных средах (в условиях пара, с повышенным содержанием кислот, щелочей).

Керамика

Керамика - поликристаллический материал, получаемый спеканием природных глин и их смесей с минеральными добавками, а также оксидов металлов и других тугоплавких соединений. Ситаллы - неорганические материалы, получаемые путем направленной кристаллизацией стекла. Благодаря высоким диэлектрическим свойствам, стойкости в химически активных средах, высоким механическим свойствам эти материалы нашли широкое применение в электронной, радиотехнической электротехнической промышленности, в химической промышленности для футеровки емкостей, в металлообработке для изготовления металлорежущего инструмента, деталей, работающих на истирание с одновременным нагревом – фильер для протяжки проволоки, сопл пескоструйных аппаратов и др.

Окисная керамика, состоящая из чистых оксидов Al3O3, ZrO2, сохраняет высокие механические свойства до высоких температур и обладает высокими диэлектрическими свойствами. Керамику и ситаллы шлифуют инструментом из синтетических и природных алмазов, а также полируют алмазными порошками и пастами. Таким образом, на изделиях из этих материалов получают параметры шероховатости до Ra=0.008 мкм. 

 

 

 

 


ЗАКЛЮЧЕНИЕ

 

Таким образом, к неметаллическим материалам относятся полимерные материалы органические и неорганические: различные виды пластических масс, композиционные материалы на неметаллической основе, каучуки и резины, клеи, герметики, лакокрасочные покрытия, а также графит, стекло, керамика.

Неметаллические материалы являются не только заменителями металлов, но и применяются как самостоятельные, иногда даже незаменимые материалы. Отдельные материалы обладают высокой механической прочностью, легкостью, термической и химической стойкостью, высокими электроизоляционными характеристиками, оптической прозрачностью и т. п. Особо следует отметить технологичность неметаллических материалов. Применение неметаллических материалов обеспечивает значительную экономическую эффективность. Основой неметаллических материалов являются полимеры, главным образом синтетические.

Знание строения и закономерностей в изменении свойств неметаллических материалов помогает специалистам рационально использовать их в технических конструкциях.

Одной из основных особенностей в строении неметаллических материалов является преобладание ионной либо ковалентной связи между частицами. Отсутствие свободных электронов в виде электронного газа, как это имеет место у металлов, в значительной степени определяет отличие их физических, химических и механических свойств от свойств металлов.

Такие их свойства, как достаточная прочность, жесткость и эластичность при малой плотности, светопрозрачность, химическая стойкость, диэлектрические свойства, делают эти материалы часто незаменимыми. Они находят все большее применение в различных отраслях машиностроения.

 


СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

 

 

1 Волчок И.П. Современные технологии производств. 1-4 часть. - Запорожье, 1996.

2    Гидравлические прессы для неметаллических материалов, М., Машиностроение, 1969, c.33-90.

3 Замятин В.К. Технология и оснащение сборочного производства машиноприборостроения: Справочник. -М.Машиностроение, 1995. - 608 с.  

4 Кузьмин Б.А. Технология металлов и конструкционные материалы, М., Машиностроение, 1981.

5 Лахтин Ю.М., Леонтьева В.П.. Материаловедение. М.:²Машиностроение², 1990

6 Мартынов Э.З Технологии отрасли, часть 2, Конспект лекций, Новосибирск, 2002 г., 75 с.

7 Мартынов Э.З., Никитин Ю.В. Технологии отрасли, часть 1, Конспект лекций, Новосибирск, 2000 г., 48 с.; изд 2-е 2005 г., 64 с.

8 Махаринский Е.И., Горохов В. А. Основы технологии машиностроения: Учебник. -Мн.: Высш. шк., 1997.-432с.

9 Применение неметаллических материалов в конструкциях центробежных насосов / В. В. Буренин, М. ЦИНТИхимнефтемаш 1988 с. ил.

10 Стерин И.С. Машиностроительные материалы. Основы металловедения и термической обработки. СПб, Политехника, 2003, 344с

11 Технологические процессы машиностроительного производства. Оренбург, Под редакцией С.И. Богодухова, В.А Бондаренко. ОГУ, 1996

12 Технологические процессы отрасли. Методические указания к проведению практических работ, Новосибирск, 1998, - 60с.

13 Технология конструкционных материалов. Учебник для вузов (Дальский А.М. и др.), М, 1993 г., 447 с.


ПРИЛОЖЕНИЯ

 

Приложение 1

Г. Каменск-Уральский

2020

СОДЕРЖАНИЕ

 

ВВЕДЕНИЕ. 3

1. СОСТАВ И КЛАССИФИКАЦИЯ ПЛАСТМАСС.. 5

1.1 Пластмассы и их свойства. 5

1.2 Термопласты и их классификация. 6

1.3 Реактопласты и их свойства. 11

1.4 Методы обработки пластмасс. 13

2. ХАРАКТЕРИСТИКА ФТОРОПЛАСТОВ И КАПРОЛОНА.. 16

2.1 Фторопласты и их свойства. 16

2.2 Капролон (полиамид 6 блочный) 19

ЗАКЛЮЧЕНИЕ. 25

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ.. 26

ПРИЛОЖЕНИЯ.. 27


ВВЕДЕНИЕ

 

Объективные потребности развития различных отраслей техники обусловили создание новых конструкционных материалов с высокой прочностью и большими значениями модуля упругости на металлической, керамической и полимерной основах. Неумолимые законы природы диктуют необходимость резкого увеличения прочностных характеристик изделий про минимизации их массы. Это стало возможным при изготовлении композиционных материалов на полимерной основе (композитов)

Понятие неметаллические материалы включает большой ассортимент материалов таких, как пластические массы, композиционные материалы, резиновые материалы, клеи, лакокрасочные покрытия, древесина, а также силикатные стекла, керамика и др. Неметаллические материалы являются не только заменителями металлов, но и применяются как самостоятельные, иногда даже незаменимые материалы. Отдельные материалы обладают высокой механической прочностью, легкостью, термической и химической стойкостью, высокими электроизоляционными характеристиками, оптической прозрачностью и т. п. Особо следует отметить технологичность неметаллических материалов.

Основой неметаллических материалов являются полимеры, главным об­разом синтетические. Создателем структурной теории химического строе­ния органических соединений является великий русский химик А. М. Бут­леров. Промышленное производство первых синтетических пластмасс (фено­пластов) явилось результатом глубоких исследований, проведенных Г. С. Пет­ровым (1907—1914 гг.). Блестящие исследования позволили С. В. Лебе­деву впервые в мире осуществить промышленный синтез каучука (1932 г.). Н. Н. Семеновым разработана теория цепных реакций (1930—1940 гг.) и распространена на механизм цепной полимеризации.

Успешное развитие химии и физики полимеров связано с именами видных ученых: П. П.. Кобеко, В. А. Каргина, А. П. Александрова, С. С. Медведева, С. Н. Ушакова, В. В. Коршака и др. Важный вклад внесен К. А. Андриановым в развитие химии кремнийорганических полимеров, широко применяемых в качестве термостойких материалов.

Применение неметаллических материалов обеспечивает значительную экономическую эффективность.  Все вышеперечисленные факторы и обусловили актуальность нашего исследования.

Целью работы является анализ применения неметаллических материалов в машиностроении

В соответствии с поставленной целью решались следующие основные задачи:

-изучить свойства пластмасс;

-рассмотреть термопласты и их классификацию;

- определить свойства реактопластов;

- изучить методы обработки пластмасс;

- определить свойства фторопластов;

- рассмотреть характеристики капролона.

Методы исследования:

- обработка, анализ научных источников;

- анализ научной литературы, учебников и пособий по исследуемой проблеме.

Объект исследования – неметаллические материалы

Предмет исследования – применение неметаллических материалов в машиностроении

 


1. СОСТАВ И КЛАССИФИКАЦИЯ ПЛАСТМАСС

 

1.1 Пластмассы и их свойства

 

Пластмассы различных видов нашли широкое применение в машиностроении благодаря своим высоким антикоррозионным и механическим свойствам. Детали, изготовленные из пластмасс, имеют хороший внешний вид, блестящую гладкую поверхность различных цветов.

Пластмассы это ма­териалы способны при нагревании размягчаться, становиться пластичны­ми, и тогда под давлением им можно придать заданную форму, которая затем сохраняется. В зависимости от природы связующего переход отфор­мованной массы в твердое состояние совершается или при дальнейшем ее нагревании, или при последующем охлаждении.

Пластмассы состоят из связующего вещества и наполнителя. Связующими служат смолы, а наполнителем различные вещества: древесная мука, волокнистые материалы, обрезки или листы бумаги, ткани и т.п.

Другим важным компонентом пластмасс является наполнитель (порош­кообразные, волокнистые и другие вещества как органического, так и неор­ганического происхождения). После пропитки наполнителя связующим по­лучают полуфабрикат, который спрессовывается в монолитную массу. Наполнители повышают механическую прочность, снижают усадку при. прессовании и. придают материалу те или иные специфические свойства (фрикционные, антифрикционные и т. д.). Для повышения пластичности в полуфабрикат добавляют пластификаторы (органические вещества с вы­сокой температурой кипения и низкой температурой замерзания, например олеиновую кислоту, стеарин, дибутилфталат и др.). Пластификатор сооб­щает пластмассе эластичность, облегчает ее обработку. Наконец, исходная композиция может содержать отвердители (различные амины) или катализаторы (перекисные соединения) процесса отверждения термореактивных связующих, ингибиторы, предохраняющие полуфабрикаты от их само­произвольного отверждения, а также красители (минеральные пигменты и спиртовые растворы органических красок, служащие для декоративных целей) [1].

Различают два основных вида пластмасс: термопластичные и термореактивные.

К термопластичным материалам или термопластам (thermoplast) относятся полимеры, которые при нагревании в процессе переработки переходят из твердого агрегатного состояния в жидкое: высокоэластическое или вязкотекучее (литьевые термопласты переходят в вязкотекучее состояние). При охлаждении материала происходит обратный переход в твердое состояние. Поведение при нагревании отличает термопласты от термореактивных материалов или реактопластов (thermoset), которые отверждаются при переработке и не способны далее переходить в жидкое агрегатное состояние.

 

1.2 Термопласты и их классификация

 

В зависимости от принимаемых фазовых состояний термопластичные материалы делятся на аморфные и кристаллические (точнее кристаллизующиеся). В кристаллизующихся литьевых термопластах всегда сохраняется какая-то доля незакристаллизованного (аморфного) материала, поэтому эти материалы иногда называют частично-кристаллическими. Некоторые материалы (PC), в принципе способные к кристаллизации, не кристаллизуются при литье под давлением, оставаясь аморфными. Есть материалы, которые могут быть аморфными или кристаллизоваться в зависимости от условий литья. Другие- очень сильно меняют степень кристалличности и свойства при изменении технологического режима.

Способность к кристаллизации - очень важное свойство материалов, определяющее их поведение при переработке, и которое обязательно должно учитываться при конструировании изделий и пресс-форм и выборе технологического режима литья. Кристаллизующиеся материалы имеют высокий уровень усадки и анизотропии усадки (разница продольной и поперечной усадки). Пигменты и другие добавки, действуя как нуклеаторы (зародышеобразователи кристаллизации), могут значительно изменять структуру и свойства кристаллизующихся материалов.

В зависимости от температуры аморфные термопласты имеют 3 физических состояния: стеклообразное, высокоэластическое и вязкотекучее.
Для стеклообразного состояния характерны небольшие упругие деформации. Переход из высокоэластического состояния в стеклобразное происходит в некотором диапазоне температур, центр которого называют температурой стеклования Tc (glass transition temperature, Tg). В зависимости от метода определения температура стеклования может значительно изменяться. При повышении температуры стекловании повышается температура эксплуатации аморфного материала [10].

Полимер в высокоэластическом состоянии способен к большим обратимым деформациям, достигающим сотен и более %. При повышении температуры литьевой термопластичный материал переходит из высокоэластического состяния в вязкотекучее. Температура такого перехода называется температурой текучести Тт. Выше температуры текучести в полимере проявляются необратимые деформация вязкого течения. При нагревании амофного материала обычно визуально наблюдается нефазовый переход, напоминающий процесс плавления для кристаллизующихся термопластов. Температуру такого перехода условно называют температурой плавления (melting temperature, Tm) аморфного материала.

В кристаллизующихся термопластах аморфная фаза может приобретать описанные выше физические состояния. При нагревании кристаллическая фаза плавится. Температура этого фазового перехода называется температурой плавления Тпл (melting temperature, Tm). Свойства кристаллизующихся полимеров зависят от содержания кристаллической фазы и от того, в каком физическом состоянии (стеклообразном или высокоэластическом) находится при температуре эксплуатации аморфная фаза.

Классификация термопластов по эксплуатационным свойствам

Литьевые термопластичные материалы делят на несколько групп в зависимости от уровня эксплуатационных свойств. К таким свойствам прежде всего относится температура долговременной эксплуатации.
Пластмассы достаточно условно делят на группы (в различных изданиях приводятся разные критерии классификации):

- Материалы общего назначения или общетехнического назначения (general purpose plastics);

- Конструкционные пластмассы или пластмассы инженерно-технического назначения (engineering plastics);

- Суперконструкционные (super-engineering plastics) или высокотермостойкие полимеры (high temperature plastics).

Среди термопластов выделяют особую группу термопластичных эластомеров или термоэластопластов (TPE), которые по технологическим свойствам являются обычными термопластами, а по эксплуатационным подобны каучукам и резинам, т.е. способны к большим обратимым деформациям. В зависимости от температуры долговременной эксплуатации термоэластопласты также подразделяют на материалы общего назначения (general purpose TPE) и инженерно-технического назначения (engineering TPE).


Классификация термопластов по химической структуре

По химическому строению многочисленные литьевые термопластичные материалы обычно подразделяют на несколько групп (классов). Современная промышленность выпускает большое количество типов полиолефинов (PO), важнейшими из которых являются группы полиэтиленов (PE) и полипропиленов (PP). Многочисленные типы материалов представлены в группах стирольных пластиков (PS), полиамидов (PA), сложных полиэфиров (polyester)[6].
Традиционно выделяют группы полимеров на основе целлюлозы (cellulosic plastics), фторполимеров или фторопластов (fluoro plastics). Изготовители акриловых полимеров или акрилатов (acrylic) часто указывают только принадлежность материала к данной группе и не приводят тип материала.

Гомополимеры. Сополимеры. Стереоизомеры

Полимеры, построенные одинаковых мономеров называют гомополимерами (homopolymer), из разных - сополимерами (copolymer).
Для некоторых типов материалов (полипропилен, полистирол и др.) помимо химической формулы большое значение имеет стереоизомерия - тип пространственной конфигурации боковых групп атомов относительно полимерной цепи. Наиболее важные типы стереоизомеров:

- изотактический (isotactic) - боковые группы расположены по одну сторону полимерной цепи;

- синдиотактический (syndiotactic) - боковые группы последовательно чередуются по одну и другую сторону полимерной цепи;

 - атактическиий (atactic) - беспорядочное расположение боковых групп по одну и другую сторону полимерной цепи.

Развитие технологи синтеза полимеров с использованием металлоценовых катализаторов, позволило наладить в последние годы промышленный выпуск различных стереоизомеров.

В качестве примера влияния стереоизомерии на эксплуатационные свойства материала можно привести синдиотактический полистирол (SPS), являющийся кристаллизующимся материалом в отличие от обычного аморфного атактического полистирола.

По структуре сополимеры делят на несколько типов:

- блок-сополимер (block-copolymer) - регулярное чередование последовательностей (блоков) звеньев в основной цепи;
- статистический сополимер (random copolymer) - нерегулярное чередование последовательностей звеньев;
- привитой сополимер (graft copolymer) - имеет основную цепь в виде гомополимера или сополимера, к которой присоединены боковые цепи;
- чередующийся или альтернатный сополимер (alternating copolymer) - регулярное чередование звеньев в основной цепи.

В последнее время большое развитие получили интерполимеры - сополимеры, образующие гомогенную структуру (компоненты не выделяются в отдельные фазы).

Помимо двойных сополимеров, построенных из двух типов мономерных звеньев, выпускаются тройные сополимеры (terpolymer), состоящие из трех типов звеньев, а также сополимеры с четырьмя и большим количеством типов звеньев. Тройными сополимерами являются АБС-пластики (ABS), ACA-сополимер (ASA) и др. [4].

Классификация термопластов по типу наполнителя

Наполнители могут значительно изменять эксплуатационные и технологические свойства термопластов.

Термопласты, содержащие стекловолокно и др. виды стеклянных наполнителей, традиционно называют стеклопластиками (glass filled). В последние годы большое распространение получили материалы, наполненные длинным стекловолокном, требующие особых условий переработки.

Углепластиками (carbon filled) называют материалы, содержащие углеродное волокно.

Иногда выделяют группу «специальных» термопластов. К ним относят материалы, содержащие антипирены (материалы с повышенной стойкостью к горению), электропроводящие добавки (антистатические, электропроводящие, ЭМИ-экранирующие материалы), антифрикционные добавки (материалы с пониженным коэффициентом трения), добавки, придающие износостойкость и др.

1.3 Реактопласты и их свойства

 

Термореактивные пластмассы (текстолоит, карболит пресс-материал

Ж3-010-62, АК-4, АГ-17 и др.) при повторном нагреве не переходят в пластическое состояние.

Пример реактопластов - это стеклотекстолит. Стеклотекстолиты бывают КАСТ и ВФТ-С.

Таблица 1.1



Поделиться:


Последнее изменение этой страницы: 2021-01-08; просмотров: 126; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.169.122 (0.118 с.)