Посланец разума или неизвестное явление природы? 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Посланец разума или неизвестное явление природы?



 

В один из августовских вечеров 1977 года двухзеркальный радиотелескоп, принадлежащий радиообсерватории Университета штата Огайо (США), принял неизвестный сигнал. Он оказался в 30 раз мощнее шумового фона, всегда присутствующего на входе приемника. Запись сигнала на электронной вычислительной машине в точности повторяла форму диаграммы направленности антенны радиотелескопа. Это говорило о том, что источник сигнала был небесным объектом и имел малые угловые размеры по сравнению с шириной диаграммы направленности антенны. Самым удивительным было то, что сигнал имел прерывистый характер. Спустя несколько минут после того как источник сигнала вышел из поля зрения антенны из‑за его суточного движения на небесной сфере, его снова готовились принять. У радиотелескопа была такая возможность. В его антенне был еще один приемный рупор, сдвинутый по часовой стрелке относительно первого. Но приемник "молчал". Сигнал был "выключен". Поэтому и назвали источник сигнала "внеземным маяком".

Небесная область, откуда был излучен сигнал, находилась рядом с центром Галактики и вблизи плоскости эклиптики.

Возможно, что источник сигнала находится в пределах солнечной системы. В то время в этой области не было ни больших планет, ни крупных астероидов, ни космических аппаратов.

Выяснить природу сигнала – задача пока неразрешимая. Он был принят только один раз. Многочисленные попытки вновь обнаружить сигнал к успеху не привели. Конструкция университетского телескопа такова, что время наблюдения какого‑либо объекта ограничивается несколькими минутами в сутки. Так что шансы найти сигнал еще раз невелики.

По мнению ученых обсерватории, загадочный сигнал либо излучен неизвестным космическим зондом, либо это первый сигнал от внеземной цивилизации, принятый на Земле. Подтвердить одно из этих предположений может только повторный прием неопознанного радиосигнала.

Это один из последних случаев приема неизвестного сигнала, и опять… неудача. Молчат инопланетяне. Может быть, правы сторонники уникальности земного разума и мы одиноки во вселенной? Все‑таки вот уже двадцать лет как поиск сообщений от внеземного разума стал научным направлением, а ни сигналов искусственного происхождения, ни однозначных следов астроинженерной деятельности внеземных цивилизаций в космосе не замечено.

Другие ученые возражают: "Внеземные цивилизации не найдены только потому, что пока нет действенных методов поиска". Член‑корреспондент АН СССР Н. С. Кардашев считает отрицательные результаты поиска внеземных сигналов искусственного происхождения следствием несовершенства проводившихся экспериментов, "в лучшем случае их можно считать лишь отработкой методики поиска, а не самим поиском сигналов, посылаемых другими цивилизациями".

Проблема очень сложна. Поймать сигнал иной цивилизации гораздо труднее, чем найти иголку в стоге сена.

Недавно во Франции взрослые дяди играли в одну игру, которую бы дети назвали "пряталки наоборот". У взрослых она звучала по‑научному – SETI (SETI – аббревиатура английского названия научной проблемы поиска внеземных цивилизаций). Ее участники имитировали разбросанные в космосе цивилизации, ничего не знающие друг о друге. По правилам игры каждый старался, как говорится, других посмотреть, себя показать, то есть обнаружить других участников игры и дать знать о себе.

Конечно, истинные космические расстояния воссоздать не представлялось возможным. Вместо десятков и сотен световых лет участники игры располагались на расстояниях нескольких километров. Полевые бинокли заменяли играющим огромные радиотелескопы, а вместо радиопередатчиков использовали обычные электрические лампочки. Ночное освещение имитировало космические шумы и ложные сигналы, которые поступают в антенны радиотелескопов при поиске внеземных сообщений.

Правда, задача найти друг друга в этой игре была попроще, чем в настоящей SETI. Во‑первых, играющие были уверены, что те, кого они ищут, действительно излучают сигналы (свет), во‑вторых, была известна природа сигнала. Неизвестным оставалось лишь направление прихода сигнала, да и то не в пространстве, а в плоскости земной поверхности.

В первом туре играющие находились друг от друга на расстоянии 10 километров. Яркость свечения лампочек была выбрана вполне достаточной, чтобы увидеть их с помощью бинокля. На игру было отведено, как в футболе, 90 минут. И оказалось, что ничего, кроме ложных сигналов, играющие не обнаружили.

Во втором туре яркость лампочек прибавили, а некоторые участники эксперимента ухитрились придать сигналам такую закономерность, чтобы они лучше выделялись на фоне осветительных устройств. Но результат остался тем же.

В третьем туре условия игры изменились. Количество играющих было увеличено с 4 до 5, так что число возможных контактов возросло с 12 до 20. Играющие подошли друг к другу поближе: на расстояние до 6 километров. И только тогда пришла удача – удалось установить два контакта.

Эта игра – пример, иллюстрирующий сложность проблемы. Вполне возможно, что подобные "детские" игры ученых лучше раскроют особенности поиска в условиях большой неопределенности наших знаний о сигналах внеземного разума.

А может быть, у человечества был уже случайный контакт, только мы не придали ему значения? Ведь не разгадана до сих пор природа задержанных радиоэхо, известных также как "серии Штермера".

Эти сигналы заметили еще на заре радиотехники Тесла и Маркони. Кстати, в тридцатых годах Тесла первым и высказал гипотезу о том, что это явление связано с межпланетной цивилизацией. Потом странные радиоэхо были обнаружены при работе одной из первых европейских радиостанций, принадлежавшей фирме "Филипс" и работавшей на волне 31 метр. Каждые несколько десятков секунд в часы работы станция передавала в эфир определенные телеграфные символы. Вскоре специалисты заметили, что кто‑то повторяет сигналы через несколько секунд после их излучения. Создавалось впечатление, будто некто в космосе (уж слишком велика по земным масштабам задержка сигналов) принимает символы и транслирует их усиленными на Землю, да еще по какому‑то неизвестному правилу изменяет время задержки. Такой способ передачи сообщений в современной радиотехнике называется временной импульсной модуляцией.

В конце 20‑х годов изучением загадочных эхо занялись доктор Ван дер Поль, который систематически занимался исследованием распространения радиоволн, инженер Йорген Халльс и профессор математики из Осло Карл Фредерик Штермер.

В декабре 1927 года сосед К. Штермера, инженер и радиолюбитель Йорген Халльс, рассказал ученому о явлении, свидетелем которого ему довелось быть. По его словам, через несколько секунд после сигналов мощной коротковолновой станции в Эндховене (Голландия) слышались сильные отголоски. "Как только я услышал об этом замечательном явлении, – писал впоследствии Штермер, – мне пришла мысль, что волны беспроволочного телеграфа могли быть отражены теми токами и поверхностями электронов, на которые мысль моя была направлена в годы с 1904‑го по 1907‑й при теоретическом исследовании северных сияний".

В декабре 1927 года К. Штермер договорился с Эндховеном о сеансах радиопередачи. Первые опыты начались в январе. Прием вели две станции: в Форнебо и Бигде. Обе станции располагались близ Осло. На станции в Бигде работал инженер Халльс. Радиопередатчик в Эндховене посылал сигналы через каждые пять секунд. Они регистрировались с помощью осциллографа. Очень четко фиксировались импульсы с Эндховена. Тогда было обнаружено и несколько других сигналов, "которые могли вызываться атмосферными пертурбациями или же эхом". Во время опытов Йорген Халльс часто звонил по телефону К. Штермеру, чтобы сообщить о своих наблюдениях. Он слышал гораздо больше запоздалых сигналов, чем отмечала станция в Форнебо. Это, по всей видимости, объясняется тем, что у него был очень чувствительный радиоприемник (Халльс вел прием сигналов на громкоговоритель).

Летом того же года состоялась встреча К. Штермера с Ван дер Полем, работавшим в Эндховене. Они договорились посылать стандартные телеграфные посылки (три импульса – три тире). Период повторения тройных посылок составлял 20 секунд. От осциллографа решено было отказаться.

11 октября в квартире Халльса Штермер записал промежутки времени между сигналами и отголосками: это и были те самые серии К. Штермера, которые впоследствии неоднократно публиковались в газетах и журналах. А вот свидетельство ученого: "Отмеченные мной периоды времени не имеют притязания на точность, поскольку я не был достаточно подготовлен, но они дают по крайней мере качественное представление о данном явлении. По словам Халльса, он до моего прихода наблюдал несколько отголосков через три секунды".

25 октября К. Штермер зарегистрировал несколько сигналов с очень большой задержкой (до 25 секунд). Затем эхо исчезло. Но уже в феврале 1929 года оно снова наблюдалось. В мае французские инженеры Галла и Талон зарегистрировали около двух тысяч отголосков, причем задержка достигала 30 секунд. Они также слышали слабые и сильные сигналы. Результаты их наблюдений также опубликованы.

Подобные исследования проводили Э. Эплтон из Королевского колледжа в Лондоне и его ассистент Р. Барроу. Им тоже удалось получить "серии Штермера".

В последующие годы были получены новые данные об эхе. Время задержки менялось, частота эхо‑сигнала оставалась такой же, как у излученного радиостанцией сигнала, некоторые эхо были размытыми, а часть принятых сигналов поражала своей четкостью и силой.

С ростом числа станций принимать радиоэхо становилось все труднее, тем не менее сообщения о нем появляются и в наши дни. Когда заработали телефонные коротковолновые станции, связисты, которым довелось услышать свой голос в присутствии эхо‑эффекта, сравнивали его с "голосом из угла комнаты".

Предлагаемые объяснения явления столь большой временной задержки и малого ослабления сигнала были неубедительны. Такую задержку сигнала мог дать, например, пассивный переизлучатель, находящийся где‑то в районе Луны. Только при этом величина пришедшего сигнала была бы мизерной, а Штермер и другие наблюдатели порой принимали сигналы, ослабленные только в три раза по сравнению с прямым сигналом передатчика.

Много сторонников было у волноводной гипотезы необычного радиоэха.

При определенных условиях в атмосфере Земли образуются невидимые глазу волноводы, попав в которые радиоволны могут путешествовать на большие расстояния с малым затуханием. Такие естественные волноводы на заре радиолокации, когда еще мало знали об особенностях распространения радиоволн, приводили иногда к курьезам. Например, один из крейсеров в Средиземном море во время второй мировой войны растратил свой боевой запас впустую по несуществующей цели, которая, судя по экрану радара, находилась в пределах досягаемости его орудий. Над операторами "подшутил" природный волновод, благодаря которому радар принял за вражеский корабль сигнал, отраженный от острова Мальта, который находился в 600 милях от крейсера. Да и в нынешние годы природные волноводы зачастую "подкидывают" дополнительную работу операторам в виде неопознанных летающих объектов.

Так вот была выдвинута гипотеза, что причина радиоэха – это естественный волновод. Будто радиоволна, путешествуя в нем и многократно огибая земной шар, прорывается в разных местах и разное время сквозь нижнюю стенку волновода и тогда становится слышна на Земле. Так объяснялась и разная величина времени задержки сигналов.

Но для того чтобы волна циркулировала в волноводе полминуты (а иногда бывали задержки и больше), она должна обежать земной шар не менее 200 раз. После такого путешествия амплитуда сигналов станет совсем крошечной, а не такой, какой наблюдали ее Штермер и другие исследователи. Так до сих пор у ученых нет ясности относительно странных радиоэхо.

В 60‑х годах профессор Стэнфордского университета Р. Брейсуэлл выступил с гипотезой, согласно которой наши соседи по Галактике посылают автоматические зонды к планетам иных звездных систем. Такие зонды могли быть отправлены и к Земле, а также к остальным планетам солнечной системы.

"Если мы рассмотрим ресурсы биологического конструирования, – сказал Р. Брейсуэлл на одной из своих лекций, – представляется правдоподобным, что некоторое общество может послать породу космических посланцев, имеющих мозг, но не имеющих тела, впитавших традиции своего общества и распространяющих их в основном бесплотно. Однако некоторые из них окажутся средством распространения межгалактической культуры".

Такой посланец должен следить за радиосигналами планеты: они должны оповестить его, что цивилизация достигла зрелости и можно будет установить связь. "Будем ли мы удивлены, – спрашивал Р. Брейсуэлл, – если первым его посланием будет телевизионное изображение созвездия?" "Серии Штермера", по мнению Брейсуэлла, могли быть таким посланием.

Английский астроном Д. Льюнэн отметил на графике в виде точек интервалы между сигналами и эхом, на другой оси координат он отложил порядковые номера сигналов передатчика (они посылались через равные промежутки времени). Получилась карта созвездий северного полушария! Звезды на ней занимали несколько отличное положение от того, какое наблюдают астрономы сегодня. Но она довольно точно соответствовала одиннадцатому тысячелетию до нашей эры. Именно тогда, по мнению Льюнэна, прибыл космический посланец, оснащенный радиоаппаратурой.

Только одна из звезд – Эпсилон Волопаса – была явно не на своем месте. Таким способом автомат выделяет звезду, пославшую его, решил Льюнэн.

Болгарские любители астрономии применили другой метод дешифровки и пришли к заключению, что зонд прибыл со звезды Дзета Льва.

Существуют и другие варианты дешифровки "серий Штермера", так что их смысловое содержание при условии, что таковое имеется, трактуется далеко не однозначно, тем более что многие сообщения неполны, поскольку Штермер пропустил однажды начало передачи. Но есть ряд фактов, которые можно отнести в пользу гипотезы Брейсуэлла. Так, задержанные эхо неизменно появлялись при освоении новых диапазонов. В дальнейшем их интенсивность и частота появления падали. И еще один факт – появление сильных радиоэхо связано с положением одной из либрационных точек системы Земля – Луна. Наиболее интенсивные сигналы наблюдались тогда, когда запаздывающая либрационная точка проходит через меридиан. В печати встречаются сообщения и о наблюдении в этих точках слабых объектов. Возможно, что инопланетный зонд находится там.

Точки либрации, их еще называют лагранжевыми, обладают уникальными свойствами. Если в эту точку попадет космический аппарат, то он сможет находиться в ней бесконечно долго, потому что гравитационные и центробежные силы в этих точках уравновешиваются. На практике, чтобы компенсировать разного рода возмущающие воздействия, может быть, придется иногда включать двигатель. Этих удивительных точек в системе Земля – Луна пять. Все они находятся недалеко от Луны. В проектах будущего им принадлежит видное место. В точках либрации предполагают разместить космические станции, лаборатории, ретрансляторы для создания системы земной глобальной связи и связи с обратной стороной Луны, промежуточные базы при полете на Луну, космические поселения.

Если принять гипотезу Брейсуэлла, то следует признать высокий технический и научный уровень цивилизации, пославшей зонд. Исключительны надежность и ресурс аппаратуры: ее возраст по крайней мере несколько тысячелетий. Широкий диапазон длин волн, в котором наблюдалось радиоэхо с космической задержкой, говорит об очень совершенных радиотехнических устройствах, к которым мы, земляне, только еще приближаемся. Высказано предположение, что зонд занимается сбором информации о земной цивилизации и имеет большое число разведывательных устройств, а то, что принимается на Земле, есть обрывки связи между ними.

Идея установления контакта или обнаружения цивилизации путем посылки автоматического зонда представляется более эффективным решением, нежели пытаться искать цивилизации из своего родного дома. По оценкам Брейсуэлла, шанс обнаружить внеземную цивилизацию при условии, что она активно ищет с нами контакта, составляет гораздо меньше, чем один из миллиона.

Зонд же во многом облегчает задачу. После того как он войдет в расположение соседней цивилизации, обнаружить ее сигналы уже не представит особого труда. Более того, становится возможной обратная связь с цивилизацией, пославшей его. Таким образом, высшая цивилизация вооружает низшую техническими средствами для связи.

Вполне возможно, что цель зонда ограничивается только задачей обнаружения цивилизации, а не контакта с ней. Тогда зонд может быть защищен от наших попыток войти с ним в контакт. На первый взгляд эта логика кажется непонятной, но проблема контакта столь многогранна, что такое поведение не исключается.

К тем же выводам, что и Брейсуэлл, пришел и американский физик и радиоинженер Деллинджер. В 1962 году он писал: "В 2012 году едва ли будут корабли, посылаемые к звездам. Человек, вероятно, не полетит в космическом корабле к звездам… Исследование космоса в 2012 году будет производиться в основном не космическими кораблями, а специальным оборудованием с использованием радиоволн".

Выводы Деллинджера относительно будущих перспектив космических зондов разделяют далеко не все. Хотя сейчас и рано, наверное, говорить о полете к ближайшей звезде (путешествие к ней займет около 10 тысяч лет), но, по мнению английских ученых, экспедиция за пределы солнечной системы, на расстояние нескольких тысяч астрономических единиц (астрономическая единица равна расстоянию от Земли до Солнца) при современных темпах развития ракетной техники лет через двадцать представляется реальной. В качестве источников энергии для ускорения космического аппарата за пределами сферы притяжения Земли они предлагают двигатели "малой тяги", которые могут обеспечить небольшое ускорение, но в течение длительного времени: солнечный парус большой площади, использующий давление солнечного излучения, ионные двигатели, термоядерные и даже аннигиляционные источники энергии. При скорости космического аппарата 50‑100 километров в секунду полет на расстояние 500‑1000 астрономических единиц займет около 50 лет.

Ну а как же проверить на деле гипотезу Брейсуэлла относительно связи непонятных радиоэхо с инопланетным зондом? Вот что говорит по этому поводу Заведующий лабораторией Института космических исследований АН СССР, доктор технических наук Л. Ксанфомалити: "К сожалению, предложить простые методы трудно. Посылка специального космического аппарата в точки L1‑L5 (это пять либрационных точек, о которых уже упоминалось. – В. Я.) была бы очень интересной, но в научных программах, насколько это известно мне, такие экспедиции пока не предусматриваются. Более реально поставить специальный эксперимент на аппаратах, направляемых к планетам солнечной системы. На аппарате должен быть установлен радиопередатчик сигнала с какой‑либо модуляцией и приемник с коррелятором. За длительное время полета можно надеяться получить необходимую информацию. Если исходить из реальности задержанных радиоэхо и его связи с зондом, находящимся ненамного дальше Луны, эффект задержанного радиоэхо должен изменяться по мере удаления аппарата от Земли и полностью отсутствовать у других планет, С другой стороны, если задержанное радиоэхо будет иметь неизменные статистические характеристики на любом удалении от Земли, феномен следует скорее всего связать с каким‑то неизвестным явлением природы. Такое предположение достаточно фантастично, но под стать самому задержанному радиоэху".

 

Кого мы ищем?

 

Зачинание новых областей науки иногда сопровождается восторженной уверенностью в скором успехе. Надежды на десятилетия, а подчас и на столетия опережают реальность. Пример тому двадцатые годы. На заре космонавтики многие ее энтузиасты верили, что межпланетные полеты дело ближайших лет. Потом восторги уступили место строгому научному поиску, который основывался на реальных возможностях и прогнозах. Нечто подобное, вероятно, происходит в наши дни с SETI. Постулат о неограниченной экспансии разума во вселенной, на котором строились прогнозы о колоссальных возможностях внеземных цивилизаций, уступает место более скромной оценке технологического уровня наших предполагаемых соседей. Постулат безудержного роста скорее вера в сказочного джинна типа старика Хоттабыча, который может все. Поэтому, наверное, многие, не дождавшись "космического чуда" (свидетельств чужой астроинженерной деятельности в звездных просторах), перешли от бурного оптимизма к пессимизму и объявили, что разумная жизнь на Земле явление уникальное. Но даже пример нашего "уникального" развития тоже дает основание для более скромной оценки возможностей наших соседей.

Сейчас мы пока живем в эпоху взрывов: индустриального, энергетического, информационного… Если взрывной характер нашего роста сохранится, то через сотни миллионов лет мы достигнем уровня энергетики квазаров – самых мощных источников энергии во вселенной. По энергии наше Солнце и квазар даже не принято сравнивать, настолько несопоставимы их уровни.

Сколь долго будет длиться взрывная фаза? Все больше ученых склоняется к мысли, что она не бесконечна. Через из‑за экологических и сырьевых ограничений взрывной рост прекратится и положение стабилизируется.

Стабилизация или замедление роста производства энергии численности населения, пространства обитания отнюдь не означает, что прогресс остановится. Прогресс может выражаться не только в количественных, но и в качественных изменениях, хотя определенная связь между этими показателями, безусловно, есть. Взять хотя бы такой фактор, как производство энергии. Только ее абсолютное количество еще недостаточная характеристика для уровня развития цивилизации. Важнее качество энергии – объем производства на единицу веса энергетического устройства. Например, земная Цивилизация владеет энергией, которой хватило бы, чтобы послать 100‑тонную ракету на Марс с сантисветовой скоростью (в сто раз меньшей скорости света), но практически мы не можем сконцентрировать ее в такой ракете. Член корреспондент АН СССР В. С. Троицкий, автор этого примера, считает, что наиболее показательной характеристикой развитости цивилизации является освоение ею скорости передвижения масс. В этом показателе содержатся признаки владения значительной энергией, причем в очень выгодной ее форме – с большой объемной плотностью. Для передвижения масс со скоростью, например, в тысячу раз меньшей, чем скорость света, нужно не просто большое количество энергии, но энергии! выделяемой в небольшом объеме, то есть с громадной плотностью. Чтобы наглядно представить какой‑либо аналог такого двигателя, вообразите ракету, движимую направленными ядерными взрывами.

В специальной и популярной литературе определение типов цивилизаций, данное Н. С. Кардашевым, стало общепринятым. Ученый отнес нашу земную цивилизацию к первому типу. Второй тип – это цивилизация овладевшая энергией своего солнца. Третий тип – это уже сверхцивилизация, овладевшая энергией всей Галактики.

В. С. Троицкий предлагает делить цивилизации по несколько иному, можно сказать, "транспортному" признаку. Цивилизация первого типа, по определению В. С. Троицкого, овладела химической энергией и освоила космические скорости, достаточные для преодоления силы притяжения своей планеты. Цивилизация второго типа освоила ядерную энергию и сантисветовые скорости передвижения. Такие скорости передвижения транспортных средств позволяют цивилизации заселить пространство около своей звезды. И наконец, можно говорить о третьем типе цивилизации, которая овладела околосветовыми скоростями. Однако, как доказали исследования ряда ученых, возможности такой цивилизации возрастут ненамного по сравнению с цивилизацией второго типа.

Главный конструктор ракетно‑космических систем С. П. Королев на космодроме

На месте гибели Юрия Гагарина вместе с его личными документами была найдена эта фотография С. П. Королева, которую всегда носил при себе Первый космонавт. (Из музея Звездного городка. См.: "История одной фотографии")

 

1961 год.

Ах, этот день двенадцатый апреля,

Как он пронесся по людским сердцам!

Казалось, мир невольно стал добрее,

Своей победой потрясенный сам.

Какой гремел он музыкой вселенской,

Тот праздник, в пестром пламени знамен,

Когда безвестный сын земли смоленской

Землей‑планетой был усыновлен.

 

А. Твардовский

Юрий Гагарин

К. Э. Циолковский. Картина художника А. Б. Якушина из серии "Полет в космос"

Так представлял себе Циолковский космические корабли будущего

Трудная задача. Экипаж "Союза Т‑4" Владимир Коваленок и Виктор Савиных разбираются в сложной ситуации

Генерал‑майор Алексей Леонов принимает экзамен у Владимира Джанибекова и Жугдэрдэмидийна Гуррагчи

Советско‑монгольский экипаж – Владимир Джанибеков и Жугдэрдэмидийн Гуррагча – у памятника Юрию Гагарину в Звездном

Советско‑румынский экипаж – Леонид Попов и Думитру Прунариу. Первые минуты после приземления

Советско‑французский экипаж – Александр Иванченков, Жан‑Лу Кретьен, Владимир Джанибеков…

…и их дублеры – Владимир Соловьев, Патрик Бодри, Леонид Кизим

Панорама поверхности Утренней звезды, полученная со спускаемого аппарата станции "Венера‑14", совершившего мягкую посадку 5 марта 1982 года. Четко видны детали рельефа поверхности Венеры и посадочного устройства аппарата. В левой части – выносной прибор для исследования физико‑механических свойств грунта, в правой – цветная испытательная таблица. В центре – кольцо с зубцами посадочного устройства

Настанет время, и, возможно, будут проводиться регулярно шахматные турниры Земля – орбита. Центр управления полетом. За напряженным моментом в "космической партии" наблюдают Виталий Севастьянов и Анатолий Карпов

Флагман космического флота – "Космонавт Юрий Гагарин". Стабилизирующие устройства и вычислительные машины в любую качку удерживают основания антенн в горизонтальном положении. Ни на миг не должна прерываться связь между океанским и космическим кораблями во время сеанса

Фрагмент снимка района Азовского и Каспийского морей, полученного с ИСЗ "Метеор" 26 мая 1979 года (2 – дельта реки Волги, 3 – река Дон)

Космический снимок: Ленинградская область. Съемка произведена с ИСЗ "Метеор" 19 августа 1979 года (1 – Ладожское озеро, 2 – Финский залив)

Один из районов озера Байкал. Снимок получен с борта космического корабля "Союз‑22"

Так выглядит Памир с орбиты. Снимок получен с борта космического корабля "Союз‑22"

Фрагменты снимков района Каспийского моря в разных спектральных диапазонах, полученных с ИСЗ "Метеор" 10 июня 1978 года

Планета Земля. Снимок получен с автоматической межпланетной станции "Зонд"

Восход Солнца в космосе. Снимок сделан с борта орбитальной станции "Салют‑4"

"Уши" Земли. Советский планетный радиолокатор в Евпатории. Он первым вступил в радиоконтакт с планетами

Антенна Центра дальней космической связи в Евпатории

Американский радиотелескоп в Аресибо (Пуэрто‑Рико)

Туманность Андромеды, исполинская звездная спираль. Не исключено, что в туманности есть планеты, населенные разумными существами. Великое кольцо космического содружества описано Иваном Ефремовым в "Туманности Андромеды"

Здесь из черных облаков рождаются яркие звезды

Вселенная оберегает свои тайны. Туманные звездные скопления затрудняют наблюдения с помощью оптических телескопов

Шаровые скопления. Подобные объекты – самые старые в Галактике. 16 ноября 1974 года радиопередатчик в Аресибо послал радиограмму в направлении одного из скоплений. Если адресат получит послание землян и пожелает ответить, то ответ этот придет через 48 тысяч лет…

Туманность Хаббла. В ней, как и во многих других туманностях, загораются новые звезды

Одна из галактик, подобных нашей. Примерно так выглядит Млечный Путь со стороны. Стрелка указывает на расположение нашей солнечной системы

Взорвавшаяся галактика М‑82 – одна из туманностей в созвездии Большой Медведицы. Полтора миллиона лет назад в ядре галактики произошел мощнейший взрыв, энергию которого (около 1057 эрг) трудно объяснить известными астрофизическими процессами

Крабовидная туманность и пульсар (указан стрелкой) – остатки сверхновой звезды, вспыхнувшей в 1054 году. Это явление зарегистрировали в рукописях древние астрономы. Крабовидная туманность – сильнейший источник радиоволн и рентгеновских лучей

…И снова старты к звездным островам!

 

Если экспансия не безгранична, то каковы же сдерживающие ее рамки, за которые она не может выйти не впадая в противоречия с физическими и общественными законами. В. С. Троицкий полагает, что предельный размер пространства обитания цивилизации человеческого типа – около одной десятой светового года. Это равно расстоянию, которое световая волна пробегает за 36 дней. Ученый считает, что цивилизация может существовать как общность разумных существ, как целое, если время обмена информации не превышает тысячную долю средней продолжительности жизни индивида цивилизации. А чтобы передать энергию, перевозить грузы и пассажиров, пространство обитания должно быть еще меньшим. Поэтому возможное место обитания цивилизации будет ограничено небольшим сравнительно с межзвездным расстоянием пространством вокруг своей звезды.

В. С. Троицкий подсчитал, что "космическое чудо", на которое рассчитывали оптимисты в поисках внеземного разума, будет стоить очень дорого и может оказаться не по силам даже нашим чересчур развитым соседям.

Самый лучший способ дать о себе знать сразу всей Галактике – это построить радиомаяк – передатчик, который излучает во все стороны монохроматический сигнал (непрерывный сигнал одной частоты). А чтобы звездный зов был услышан, инопланетянам пришлось бы соорудить сферу размером с Землю, на которой бы размещались огромные антенны, посылающие сигнал во все точки пространства. Излучаемая всеми антеннами мощность должна быть порядка 1018 ватт. Такую радиосферу пришлось бы держать подальше от дома: на расстоянии не менее чем радиус земной орбиты, не то окружающей среде будет нанесен непоправимый вред. Возводить маяк пришлось бы не менее трех миллионов лет, и не потому, что у инопланетян сокращенный рабочий день, просто быстрее не позволяют "экологические" ограничения на чистоту звездной системы. Транспортировка в космосе большого количества грузов (а их нужно немало – всего в 500 раз меньше массы Земли) потребует примерно такого же количества ядерного горючего. Дабы не засорить околозвездную среду энергией, выделяемой двигателями транспортных кораблей, доставку строительных материалов придется растянуть на столь долгий срок. Для работы передатчика‑гиганта необходимо сто миллионов тонн ядерного горючего в год.

Землянам же, чтобы поймать сигнал из глубин вселенной на расстоянии десяти тысяч световых лет, придется построить несколько тысяч антенн диаметром около 20 метров и столько же многоканальных приемников с несколькими миллионами каналов. Несмотря на пугающие количества, такой приемный комплекс уже по силам нашей цивилизации.

Инопланетяне могут использовать для создания радиомаяка и какую‑либо непригодную для жизни планету подходящих размеров. Правда, в этом случае надо научиться изменять скорость вращения планеты так, чтобы антенны, расположенные на ее поверхности, были бы неподвижны относительно звезд. Если это условие не будет соблюдено, то монохроматический сигнал передатчика как бы "размоется" – вместо одной частоты появится целый спектр частот, и обнаружить такой сигнал будет труднее.

По мнению В. С. Троицкого, наши способы поиска внеземного разума пока перекладывают основную трудность связи на инопланетян, поэтому мы и не наблюдаем "космического чуда" в современные радиотелескопы. Их возможности наблюдения подобного объекта ограничиваются расстояниями до 100‑1000 световых лет.

Первые практические работы по поиску внеземного разума пока не могут ни подтвердить, ни опровергнуть ни одну из конкурирующих гипотез. Американские ученые вели наблюдение за двумя звездами, похожими на наше Солнце, – Тау‑Кита и Эпсилон‑Эридана (проект "Озма"). Эти звезды находятся, по астрономическим меркам, неподалеку от Солнца, на расстоянии всего нескольких световых лет. В 1976 году начались наблюдения по проекту "Озма‑2". Было прослушано около 650 звезд в окрестности до 75 световых лет. В 1978 году к работам по проекту был подключен огромный радиотелескоп в Аресибо (Пуэрто‑Рико). Но с приходом к власти в США милитариста Рейгана эти исследования в 1981 году были прекращены. Новым претендентам на мировое господство нужны деньги на новые пушки. "Если какая‑либо, возможно, существующая внеземная цивилизация желает установить контакт с Землей через Соединенные Штаты, она должна поторопиться сделать это до полуночи в среду", – с горькой иронией сообщало агентство АП. В это время по решению администрации США прекратили свои работы по поиску сигналов внеземного разума американские станции слежения.

В нашей стране поиск внеземных сигналов искусственного происхождения начал проводиться во второй половине шестидесятых годов. Система поиска сигналов внеземных цивилизаций, используемая советскими учеными, позволяет одновременно осматривать звезды всей небесной полусферы. За сутки таким образом можно "прослушать" все звезды Галактики. В этом ее принципиальное отличие от системы поиска американских ученых. Правда, оперативность достигается за счет ухудшения чувствительности.



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 92; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.19.55.116 (0.107 с.)