Зональное и региональное распределение суммарной солнечной радиации по земной поверхности 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Зональное и региональное распределение суммарной солнечной радиации по земной поверхности



Зональное- распределение солнечной радиации у земной поверхности.

 

До земной поверхности солнечная радиация доходит ослабленной атмосферным поглощением и рассеянием. Кроме того, в атмосфере всегда есть облака, и прямая солнечная радиация часто не достигает земной поверхности, поглощаясь, рассеиваясь и отражаясь обратно облаками. Облачность может уменьшать приток прямой радиации в широких пределах. Например, в зоне пустыни теряется вследствие наличия облаков всего 20% прямой солнечной радиации. Но в муссонном климате потеря прямой радиации вследствие облачности составляет 75%. В Петербурге, даже в среднем за год, облака не пропускают к земной поверхности 65% прямой радиации.

 

Распределение прямой солнечной радиации по Земному шару носит сложный характер, так как степень прозрачности атмосферы и условия облачности весьма изменчивы в зависимости от географической обстановки. Наибольший приток прямой радиации летом не в полярных широтах, как на границе атмосферы, а под 30-40° широты. В полярных широтах слишком велико ослабление радиации вследствие небольших высот солнца. Весной и осенью максимум прямой радиации не у экватора, как на границе атмосферы, а на 10-20° весной и на 20-30° осенью: у экватора слишком велика облачность. Только зимой данного полушария приэкваториальная зона получает радиации на земную поверхность, так же как и на верхнюю границу атмосферы, больше, чем все другие зоны.

 

Величины рассеянной радиации в общем меньше, чем прямой, но порядок величин тот же. В тропических и средних широтах величина рассеянной радиации - от половины до двух третей прямой радиации; под 50-60° широты она уже близка к прямой, а в высоких широтах (60-90°) рассеянная радиация почти весь год больше прямой. Летом приток рассеянной радиации в высоких широтах больше, чем в других зонах северного полушария.

-- Солнечная радиация распределяется по земле неравномерно. Это зависит:

1. от плотности и влажности воздуха — чем они выше, тем меньше радиации получает земная поверхность;

2. от географической широты местности — количество радиации увеличивается от полюсов к экватору. Количество прямой солнечной радиации зависит от длины пути, который проходят солнечные лучи в атмосфере. Когда Солнце находится в зените (угол падения лучей 90°), его лучи попадают на Землю кратчайшим путем и интенсивно отдают свою энергию малой площади. На Земле это происходит в полосе между от 23° с. ш. и 23° ю. ш., т. е. между тропиками. По мере удаления от этой зоны на юг или на север длина пути солнечных лучей увеличивается, т. е. уменьшается угол их падения на земную поверхность. Лучи начинают падать на Землю под меньшим углом, как бы скользя, приближаясь в районе полюсов к касательной линии. В результате тот же поток энергии распределяется на большую площадь, поэтому увеличивается количество отраженной энергии. Таким образом, в районе экватора, где солнечные лучи падают на земную поверхность под углом 90°, количество получаемой земной поверхностью прямой солнечной радиации выше, а по мере передвижения к полюсам это количество резко сокращается. Кроме того, от широты местности зависит и продолжительность дня в разные времена года, что также определяет величину солнечной радиации, поступающей на земную поверхность;

3. от годового и суточного движения Земли — в средних и высоких широтах поступление солнечной радиации сильно изменяется по временам года, что связано с изменением полуденной высоты Солнца и продолжительности дня;

4. от характера земной поверхности — чем светлее поверхность, тем больше солнечных лучей она отражает. Способность поверхности отражать радиацию называется альбедо (от лат. белизна). Особенно сильно отражает радиацию снег (90 %), слабее песок (35 %), еше слабее чернозем (4 %).

Земная поверхность, поглощая солнечную радиацию (поглощенная радиация), нагревается и сама излучает тепло в атмосферу (отраженная радиация). Нижние слои атмосферы в значительной мерс задерживают земное излучение. Поглощенная земной поверхностью радиация расходуется на нагрев почвы, воздуха, воды.

Та часть суммарной радиации, которая остается после отражения и теплового излучения земной поверхности, называется радиационным балансом. Радиационный баланс земной поверхности меняется в течение суток и по сезонам года, однако в среднем за год имеет положительное значение всюду, за исключением ледяных пустынь Гренландии и Антарктиды. Максимальных значений радиационный баланс достигает в низких широтах (между 20° с. ш. и 20° ю. ш.) — свыше 42*102 Дж/м2, на широте около 60° обоих полушарий он снижается до 8*102-13*102 Дж/м2.

Солнечные лучи отдают атмосфере до 20 % своей энергии, которая распределяется по всей толще воздуха, и потому вызываемое ими нагревание воздуха относительно невелико. Солнце нагревает поверхность Земли, которая передает тепло атмосферному воздуху за счет конвекции (от лат. convectio - доставка), т. е. вертикального перемещения нагретого у земной поверхности воздуха, на место которого опускается более холодный воздух. Именно так атмосфера получает большую часть тепла — в среднем в три раза больше, чем непосредственно от Солнца.

Присутствие в составе атмосферы углекислого газа и водяного пара не позволяет теплу, отраженному от земной поверхности, беспрепятственно уходить в космическое пространство. Они создают парниковый эффект, благодаря которому перепад температуры на Земле в течение суток не превышает 15 °С. При отсутствии в атмосфере углекислого газа земная поверхность остывала бы за ночь на 40-50 °С.

В результате роста масштабов хозяйственной деятельности человека — сжигания угля и нефти на ТЭС, выбросов промышленными предприятиями, увеличения автомобильных выбросов — содержание углекислого газа в атмосфере повышается, что ведет к усилению парникового эффекта и грозит глобальным изменением климата.

Солнечные лучи, пройдя атмосферу, попадают на поверхность Земли и нагревают ее, а та, в свою очередь, отдает тепло атмосфере. Этим объясняется характерная особенность тропосферы: понижение температуры воздуха с высотой. Но бывают случаи, когда высшие слои атмосферы оказываются более теплыми, чем низшие. Такое явление носит название температурной инверсии (от лат. inversio — переворачивание).

Тепловой баланс

Тепловой баланс земной поверхности и системы Земля-тропосфера

Тепло, получаемое земной поверхностью, преобразуется и перераспределяется атмосферой и гидросферой. Тепло расходуется главным образом на испарение, турбулентный теплообмен и на перераспределение тепла между сушей и океаном.

 

Наибольшее количество тепла расходуется на испарение воды с океанов и материков. В тропических широтах океанов на испарение затрачивается примерно 100-120 ккал/см2 в год, а в акваториях с теплыми течениями до 140 ккал/см2 в год, что соответствует испарению слоя воды в 2 м мощностью. В экваториальном поясе на испарение затрачивается значительно меньше энергии, то есть примерно 60 ккал/см2 в год; это равносильно испарению однометрового слоя воды.

 

На материках максимальные затраты тепла на испарение приходятся на экваториальную зону с ее влажным климатом. В тропических широтах суши расположены пустыни с ничтожным испарением. В умеренных широтах затраты тепла на испарение в океанах в 2,5 раза больше, чем на суше. Поверхность океана поглощает от 55 до 97 % всей радиации, падающей на него. На всей планете на испарение расходуется 80%, а на турбулентный теплообмен около 20 % солнечной радиации.

 

Тепло, затраченное на испарение воды, передается атмосфере при конденсации пара в виде скрытой теплоты парообразования. Этот процесс выполняет главную роль в нагревании воздуха и движении воздушных масс.

 

Максимальное для всей тропосферы количество тепла от конденсации водяного пара получают экваториальные широты - примерно 100-140 ккал/см2 в год. Это объясняется поступлением сюда огромного количества влаги, приносимой пассатами из тропических акваторий, и поднятием воздуха над экватором. В сухих тропических широтах количество скрытой теплоты парообразования, естественно, ничтожно: менее 10 ккал/см2 в год в материковых пустынях и около 20 ккал/см2 в год над океанами. Решающую роль в тепловом и динамическом режиме атмосферы играет вода.

 

Радиационное тепло поступает в атмосферe также через турбулентный теплообмен воздуха. Воздух – плохой проводник тепла, поэтому молекулярная теплопроводность может обеспечить нагрев только незначительного (единицы метров) нижнего слоя атмосферы. Тропосфера нагревается путем турбулентного, струйного, вихревого перемешивания: воздух нижнего, прилегающего к земле слоя, нагревается, струями поднимается, на его место опускается верхний холодный воздух, который тоже нагревается. Таким образом тепло быстро передается от почвы воздуху, от одного слоя к другому.

 

Турбулентный поток тепла больше над материками и меньше над океанами. Максимального значения он достигает в тропических пустынях, до 60 ккал/см2 в год, в экваториальной и субтропических зонах снижается до 30-20 ккал/см2, а в умеренных – 20-10 ккал/см2 в год. На большей площади океанов вода отдает атмосфере около 5 ккал/см2 в год, и только в субполярных широтах воздух от Гольфстрима и Куросиво получает тепла до 20-30 ккал/см2 в год.

 

В отличие от скрытой теплоты парообразования турбулентный поток атмосферой удерживается слабо. Над пустынями он передается вверх и рассеивается, поэтому пустынные зоны и выступают как области охлаждения атмосферы.

 

Тепловой режим континентов в связи с их географическим положением различен. Затраты тепла на испарение на северных материках определяется их положением в умеренном поясе; в Африке и Австралии – аридностью их значительных площадей. На всех океанах огромная доля тепла затрачивается на испарение. Затем часть этого тепла переносится на материки и утепляет климат высоких широт.

 

Анализ теплообмена между поверхностью материков и океанов позволяет сделать следующие выводы:

 

В экваториальных широтах обоих полушарий атмосфера получает от нагретых океанов тепла до 40 ккал/см2 в год.

 

От материковых тропических пустынь тепла в атмосферу практически не поступает.

 

Линия нулевого баланса проходит по субтропикам, близ 400 широты.

 

В умеренных широтах расход тепла излучением больше поглощенной радиации; это значит, что климатическая температура воздуха умеренных широт определяется не солнечным, а адвективным (принесенным из низких широт) теплом.

 

Радиационный баланс Земля-Атмосфера диссиметричен относительно плоскости экватора: в полярных широтах северного полушария он достигает 60, а в соответствующих южных – только 20 ккал/см2 в год; тепло переносится в северное полушарие интенсивнее, чем в южное, приблизительно в 3 раза. Балансом системы Земля-атмосфера определяется температура воздуха.



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 148; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.200.180 (0.015 с.)