Путешествие в далекое прошлое 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Путешествие в далекое прошлое



Реликтовое излучение не возникло в каких‑либо источниках, подобно свету звезд или радиоволнам, родившимся в радиогалактиках. Реликтовое излучение существовало с самого начала расширения Вселенной. Оно было в том горячем веществе Вселенной, которое расширялось от сингулярности.

Если подсчитать общую плотность энергии, которая сегодня содержится в реликтовом излучении, то она окажется в 30 раз больше, чем плотность энергии в излучении от звезд, радиогалактик и других источников, вместе взятых. Можно подсчитать число фотонов реликтового излучения, находящихся в каждом кубическом сантиметре Вселенной. Оказывается, что концентрация этих фотонов 500 штук в см3.

Напомним, что средняя плотность обычного вещества во Вселенной около 10–30 г/см3. Это значит, что, если бы мы «размазали» все вещество равномерно в пространстве, то в одном кубическом метре был бы всего один атом водорода – наиболее распространенного элемента Вселенной. В то же время в кубическом метре содержится около миллиарда фотонов реликтового излучения.

Таким образом, кванты электромагнитных волн, эти своеобразные частички, распространены в природе гораздо больше, чем обычное вещество. Реликтовых фотонов в миллиард раз больше, чем тяжелых частиц протонов. Если мы учтем, помимо водорода, и другие химические элементы, в состав ядер которых входят не только протоны, но и нейтроны, то это практически ничего не изменит в нашей оценке, так как водород – главный элемент в природе. Итак, 109 реликтовых фотонов на одну тяжелую частицу.

Мы знаем, что сегодня в каждом кубическом сантиметре межгалактического пространства около 500 фотонов, летящих с предельной скоростью во всех направлениях. Каждый фотон имеет свою энергию, соответствующую его частоте. При температуре 3° Кельвина большинство фотонов имеет энергию 10–15 эрг каждый. Значит, в каждом кубическом сантиметре имеется энергия реликтового излучения, равная произведению 10–15 эрг на 500, то есть 5 · 10–13 эрг. Согласно закону Эйнштейна каждой энергии соответствует масса. Энергии 5 · 10–13 эрг соответствует масса 5 · 10–34 грамма. Таким образом, в каждом кубическом сантиметре в наши дни есть 5 · 10–34 грамма реликтового излучения.

Напомним, что обычного вещества на каждый кубический сантиметр приходится в среднем 10–30 грамма. Значит, по массе вещества в две тысячи раз больше, чем реликтового излучения. Поэтому, хотя по числу штук фотонов гораздо больше, по общей массе обычное вещество сильно преобладает над реликтовым излучением. Масса реликтового излучения пренебрежимо мала.

Проследим, что было и с теми, и с другими частицами в прошлом.

В обозримом прошлом ни те ни другие частички не рождались и не исчезали. Здесь необходимы некоторые уточнения. Первое из них относится к реликтовым фотонам. Сегодняшняя Вселенная практически прозрачна для реликтового излучения. Ясно, что реликтовые фотоны в современной Вселенной в подавляющем большинстве не взаимодействуют с веществом и не могут из‑за этого меняться в числе. В далеком прошлом, когда плотность вещества была велика, была велика и температура. Вещество Вселенной было ионизовано и являлось почти однородной плазмой. Оно тогда было непрозрачным для излучения. Реликтовые фотоны активно взаимодействовали с веществом. Но сколько фотонов в какой‑то малый промежуток времени поглощалось в толще вещества, столько же этим горячим веществом и рождалось! Существовало, как говорят, равновесие между излучением и веществом. Поэтому и в этот период соотношение – миллиард реликтовых фотонов на один протон – оставалось справедливым.

Второе уточнение относится к протонам.

В своем далеком прошлом, в самые первые мгновения после начала расширения, во Вселенной было так горячо, что при температуре больше десяти тысяч миллиардов градусов столкновение частиц рождало протоны и их античастицы – антипротоны, нейтроны и антинейтроны. Ко всему этому мы еще вернемся. Пока мы не обращаемся к экзотическим первым мгновениям, можно считать, что и реликтовые фотоны и тяжелые частицы являются не рождающимися и не исчезающими.

Помня это, отправимся в прошлое. В прошлом плотность числа и тех и других частиц была, конечно, больше, чем сейчас, и возрастали эти плотности при углублении в прошлое в одинаковое количество раз. Значит, остается неизменным их отношение: один протон на миллиард фотонов.

Но между фотонами и тяжелыми частицами есть огромная разница. Масса тяжелых частиц все время неизменна. А энергия фотонов с расширением Вселенной уменьшается из‑за красного смещения. Раз меняется энергия, значит, меняется и масса каждого фотона (эта масса целиком связана с энергией его движения). Раньше каждый фотон был энергичнее, а значит, и тяжелее.

В некоторый момент в прошлом суммарная масса миллиарда потяжелевших фотонов, приходящихся на один протон, сравнивается с массой этого протона.

В этот момент в прошлом в каждом кубическом сантиметре масса обычного вещества и масса реликтового излучения сравниваются. Произошло это, когда плотность вещества (и равная ей тогда плотность излучения) была 10–20 г/см3, температура излучения и вещества тогда была около 6 тысяч градусов. Реликтовое излучение было не радиоволнами, а видимым светом. Конечно, в эту эпоху не было отдельных небесных тел, они возникли существенно позже. А еще раньше?

Еще раньше масса реликтового излучения превосходила массу обычного вещества!

Вот такое было совершенно необычное состояние. Его называют эрой фотонной плазмы.

То, о чем мы будем говорить в последующих строках, покажется кадрами из фантастического фильма. Мы подойдем к моменту начала расширения на ничтожные доли секунды – меньше одной стотысячной доли – и встретимся с совершенно необычными процессами.

На ранних стадиях расширения основную долю массы физической материи во Вселенной составляет свет и, анализируя эту стадию, мы можем на время забыть о ничтожной доли примеси к квантам света частиц обычного вещества, того вещества, которое играет основную роль в наше время, из которого состоят звезды, планеты и мы сами.

Продолжим путешествие в прошлое к сингулярности. Например, через одну секунду после начала расширения температура была десять миллиардов градусов. При меньшем времени температура еще больше. При такой огромной температуре происходят процессы рождения и аннигиляции элементарных частиц. Например, процессы рождения пар электронов и позитронов при столкновении энергичных фотонов и аннигиляции пар электронов и позитронов с превращением в кванты света – фотоны.

Для рождения пары электронов и позитронов надо затратить энергию, равную как минимум сумме масс этих частиц, умноженную на квадрат скорости света (формула E = MC2). Следовательно, такие процессы могут идти лишь при температуре выше десяти миллиардов градусов, когда много квантов света обладает подобными энергиями. Столкновения электронов и позитронов могут вести к рождению нейтрино и антинейтрино, возможна также и обратная реакция – столкновение нейтрино и антинейтрино рождает пару электрон – позитрон. Когда температура еще выше, возможно рождение более тяжелых частиц: протонов и антипротонов, нейтронов и антинейтронов, мезонов и других.

При температурах выше десяти тысяч миллиардов градусов существовало примерно в равных количествах множество сортов частиц (и в равных количествах их античастиц), в том числе и с большой массой. По мере расширения температура падала, и энергии частиц не хватало для рождения пар тяжелых частиц и античастиц, например, таких, как протон и антипротон. Эти частицы «вымирали».

При дальнейшем уменьшении температуры «вымирают» разные виды мезонов.

Очень важное событие происходит при времени около 0,3 секунды после начала расширения. В этот момент присутствуют кванты света, электроны и позитроны, нейтрино и антинейтрино (для простоты мы говорим только об одном сорте нейтрино – об электронных нейтрино).

При высокой температуре нейтрино и антинейтрино превращаются в электроны, позитроны и обратно.

Однако нейтрино – частицы, очень слабо взаимодействующие с другими объектами, для них даже плотное вещество прозрачно. И вот при 0,3 секунды после начала расширения все вещество Вселенной, включая и электроны и позитроны, становится прозрачным для нейтрино, они перестают взаимодействовать с остальным веществом. В дальнейшем их число не меняется, и они сохраняются вплоть до наших дней, только их энергия должна упасть из‑за красного смещения при расширении точно так же, как температура квантов электромагнитного излучения.

Таким образом, в нашу эпоху во Вселенной, помимо реликтового электромагнитного излучения, должны существовать реликтовые нейтрино и антинейтрино. Энергия этих частиц должна равняться примерно энергии квантов сегодняшнего реликтового электромагнитного излучения, и концентрация их также примерно совпадает с концентрацией реликтовых квантов.

Экспериментальное обнаружение реликтовых нейтрино представляло бы огромный интерес. Ведь для нейтрино Вселенная прозрачна, начиная с долей секунды после начала расширения. Обнаружив реликтовое нейтрино, мы могли бы непосредственно заглянуть в далекое прошлое Вселенной, информацию о которой несут эти частицы.

 

 

К сожалению, обнаружение нейтрино столь низких энергий, какими должны быть реликтовые нейтрино, пока практически невыполнимая задача.

В связи с этим напомним, что на наших глазах рождается нейтринная астрономия. Мы стоим на пороге систематического исследования потоков нейтрино, рождающихся при ядерных реакциях вблизи центра Солнца. Эти нейтрино позволяют непосредственно заглянуть в центр Солнца, так как вся масса Солнца для них абсолютно прозрачна. Нейтринное «просвечивание» Солнца позволит уточнить наши знания о его внутреннем строении. Точно так же в будущем астрофизикам предстоит осуществить нейтринное «просвечивание» нашей Вселенной.

Итак, мы посмотрели, что было во Вселенной с веществом и излучением в первую секунду. Как ни фантастична кажется возможность рассчитывать процессы в первую секунду с начала расширения, но современная физика позволяет это делать с полной надежностью.

 

 

Первые пять минут

В известной песенке поется:

 

Пять минут, пять минут,

Разобраться если строго,

Даже в эти пять минут

Можно сделать очень много…

 

Первые пять минут в жизни нашей Вселенной… Они определили основные ее особенности, в том числе и те, которые проявились миллиарды лет спустя, в наше время.

Процессы, которые последовали за уже рассмотренными нами первыми мгновениями и которые происходили в эти минуты, полные драматизма и действия грозных ядерных сил, определили существенные черты химического состава сегодняшней Вселенной.

Благодаря этим процессам звезды обладают достаточным запасом ядерной энергии. Поэтому то, что звезды светят, также есть следствие разгула стихий Вселенной в первые пять минут расширения.

Звезды и другие небесные тела возникли из небольшой примеси обычного вещества, о которой мы на время «забыли», рассматривая в предыдущем разделе фотоны и пары частиц – античастиц.

Вернемся теперь к этой небольшой примеси обычного вещества, которое находится в первые доли секунды после начала расширения в «кипящем котле» нейтрино и антинейтрино, электронов и позитронов и световых квантов. Оказывается процессы, в которых участвует обычное вещество, чрезвычайно чувствительны к тем условиям, которые господствовали в первые секунды расширения. Эти процессы обусловили химический состав вещества, из которого много позже, уже в эпоху, близкую к нашей, формировались галактики и звезды. Поэтому химический состав звездного вещества служит чувствительнейшим индикатором физических условий в начале космологического расширения.

Рассмотрим процессы, в которых участвует обычное вещество. В каком состоянии оно находится?

Прежде всего при температуре свыше 10 миллиардов градусов не может быть нейтральных атомов – все вещество полностью ионизовано и является высокотемпературной плазмой. Более того, при подобной температуре не могут существовать сложные атомные ядра. Сложное ядро было бы моментально разбито окружающими энергичными частицами. Поэтому тяжелыми частицами вещества оказываются нейтроны и протоны. Эти частицы подвергаются воздействию «кипящего котла» энергичных электронов, позитронов, нейтрино и антинейтрино.

Взаимодействие с этими частицами заставляет нейтроны и протоны быстро превращаться друг в друга. Эти реакции устанавливают равновесие между нейтронами и протонами. Когда температуры достаточно велики, больше ста миллиардов градусов, концентрации нейтронов и протонов будут примерно равны.

В ходе расширения Вселенной с понижением температуры становится все больше протонов и меньше нейтронов. Равенство концентраций нарушается, потому что масса нейтрона больше массы протона и образование протона энергетически более выгодно, а значит, вероятность образования протона больше, чем нейтрона. Если бы реакции продолжались и после нескольких секунд с начала расширения, то через несколько десятков секунд количество нейтронов стало бы ничтожным.

Но скорость реакции резко зависит от температуры. С убыванием ее уменьшается скорость этих реакций, и они почти прекращаются после первых секунд расширения. Относительное содержание нейтронов «застывает» на значении около 15 процентов от всех тяжелых частиц.

После этого, когда температура падает до миллиарда градусов, становится возможным образование простейших сложных ядер. Теперь энергии квантов и других частиц не хватает для того, чтобы разбивать сложное ядро. Все имеющиеся нейтроны захватываются протонами, давая сначала дейтерий, а потом реакции с участием дейтерия приводят в конце концов к ядрам атома гелия. Образуется также очень небольшое количество изотопа гелия‑3, дейтерия и лития.

Более сложных ядер в этих условиях практически совсем не образуется. Дело в том, что образование таких элементов в сколько‑нибудь значительных количествах может происходить в результате парных столкновений ядер и частиц, уже имеющихся. Это значит, что образование более сложных ядер может начинаться при столкновении ядер гелия‑4 с нейтронами, протонами или с теми же ядрами гелия‑4. Но эти столкновения не ведут к образованию сложных ядер с относительной атомной массой 5 или 8, потому что таких устойчивых ядер нет!

Указанные причины ведут к тому, что синтез элементов в начале расширения ограничивается только легкими элементами и заканчивается примерно через 300 секунд после начала расширения, когда температура падает ниже миллиарда градусов и энергия частиц уже недостаточна для ядерных реакций. Реакции, приведшие к образованию гелия, подобны тем, что происходят при взрыве водородной бомбы. Образование элементов тяжелее гелия происходит в звездах уже в нашу эпоху. В звездах вещество находится достаточно долго, и даже не очень быстрые реакции успевают пройти. Синтез элементов тяжелее железа происходит во взрывных процессах (во вспышках сверхновых звезд). Газ, прошедший стадию нуклеосинтеза в звездах, затем частично выбрасывается из них в окружающее пространство при медленном истечении с поверхности звезд и при взрывах. Из этого газа потом формируются звезды последующих поколений и другие небесные тела.

Вернемся к синтезу легких элементов в начале космологического расширения. Так как почти все нейтроны пошли на создание атомов гелия, то нетрудно подсчитать, сколько образуется гелия. Каждый нейтрон входит в состав ядра гелия‑4 в паре с протоном, поэтому доля гелия по весу будет равной удвоенной концентрации нейтронов, то есть 30 процентов.

Итак, по истечении примерно пяти минут с начала расширения вещество состоит на 30 процентов из ядер атомов гелия и на 70 процентов из протонов – ядер атома водорода. Такой химический состав вещества остается в дальнейшем неизменным, вплоть до образования галактик и звезд, когда процессы нуклеосинтеза начинают идти в недрах звезд.

Подтверждают ли наблюдения вывод о химическом составе дозвездного вещества?

 

 

Сколько гелия в природе?

Гелия очень мало на Земле. Но это связано со специфическими свойствами этого элемента и с теми условиями, в которых формировалась и эволюционировала Земля. Гелий, будучи очень летучим и инертным газом, покинул вещество Земли. Однако астрономы видят его повсюду, хотя он и очень трудно наблюдаем обычными средствами спектрального анализа.

Его обнаруживают в горячих звездах, в больших газовых туманностях, которые окружают молодые горячие звезды, во внешних оболочках Солнца, в космических лучах – потоках частиц большой энергии, приходящих к нам на Землю из космоса. Гелий оказался в самых далеких от нас объектах Вселенной – квазарах.

Весьма примечательно, что где бы его ни обнаруживали, почти всегда его по массе около 30 процентов, а стальные 70 процентов составляет водород. Примесь других химических элементов невелика. Доля их меняется от объекта к объекту, а доля гелия удивительно постоянна.

Вспомним, что именно эти 30 процентов гелия предсказываются в первичном веществе теорией горячей Вселенной. Если большая часть гелия была синтезирована в первые минуты расширения Вселенной, а другие, более тяжелые элементы синтезируются значительно позже в звездах, то именно так и должно быть – гелия везде около 30 процентов, а других элементов по‑разному, в зависимости от местных условий их синтеза в звездах и последующего выбрасывания газа из звезд в космическое пространство.

Во время ядерных реакций в звездах гелий тоже синтезируется. Но доля таким образом образовавшегося гелия мала по сравнению с образовавшимся в начале расширения Вселенной.

А нельзя ли все же предположить, что все наблюдаемые 30 процентов гелия образовались тоже в звездах?

Нет, это решительно невозможно. Прежде всего при образовании гелия в звездах выделяется большая энергия, заставляющая звезды интенсивно светить. Если бы такое количество гелия было в прошлом образовано в звездах, излученный ими свет с высокой температурой должен был бы наблюдаться во Вселенной, чего на самом деле нет.

К этому можно добавить, что наблюдения самых старых звезд, которые заведомо формировались из первичного вещества, показывают, что в них гелия тоже 30 процентов. Значит, практически весь гелий Вселенной был синтезирован в самом начале расширения мира.

Так химический анализ вещества сегодняшней Вселенной дает прямое подтверждение правильности нашего понимания процессов, которые протекали в первые секунды и минуты после начала расширения всего вещества.

 

 



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 57; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.221.13.173 (0.027 с.)