Уравнение обращения воздействий. Краткий анализ воздействий, виды дроссселирования течений (виды кризиса течения). Необходимость комплексных воздействий на поток в турбомашинах. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Уравнение обращения воздействий. Краткий анализ воздействий, виды дроссселирования течений (виды кризиса течения). Необходимость комплексных воздействий на поток в турбомашинах.



Уравнение описывает относительное изменение скорости и параметров состояния в потоке.

Анализ осуществляют по каждому из воздействий в отдельности.

Виды воздействий:

1. Тепловое воздействие:

2. Механическое воздействие:

3. Расходное воздействие:

4. Геометрическое:

5. Гидравлических потерь:

Закон обращения воздействий имеет ряд эквивалентных формулировок:

· любое физическое воздействие одинакового знака противоположным образом влияет на дозвуковые и сверхзвуковые потоки;

· переход через скорость звука с помощью одностороннего воздействия невозможен. Это явление называется кризисом течения.

переход через скорость звука возможен только в том случае, если в критическом сечении знак воздействия изменить на обратный


Билет 9

1. Газодинамические функции параметров торможения и их анализ. Критические и полные параметры.

Представим отношение статической температуры к температуре торможения как функцию числа М. Будем искать это соотношение из равенства энергий в произвольном и заторможенном состояниях:

или ,

Откуда следует связь между статической и полной температурами, выраженная через число М:

Полученное выражение носит название газодинамической функции (ГДФ) температуры торможения, обозначаемой τ с указанием безразмерной скорости как аргумента данной функции:

ГДФ плотности и давления торможения получаем с учетом изоинтропичности связи между полными и статическими параметрами:

;

;

Зависимость ГДФ параметров торможения от скоростей λ и Λ можно получить либо путем преобразований, подобных проведенным, либо заменой числа М по уравнению связи между безразмерными скоростями. В результате получим формулы для скорости λ:

; ;

и для числа Чаплыгина:

; ;

Подобие потоков по сжимаемости оценивается не физической скоростью, которая может быть очень высокой при большой температуре газа, а безразмерной, которая не зависит от полной температуры и, как указывалось выше, показывает степень преобразования потенциальной энергии в кинетическую.

2.Переход ламинарного режима течения в турбулентный, структура турбулентного пограничного слоя и закон распределения скоростей по его толщине (см. также ЛР), отрыв пограничного слоя. Расчет коэффициента Дарси для ламинарного режима, турбулентного режима с различной степенью проявления шероховатости (неравенства Сабанеева). Характеристика сети.

Режим течения зависит от многих факторов, главным из которых является соотношение между силами инерции и силами вязкости, характеризуемое числом Рейнольдса. При низких его значениях ламинарное течение остается устойчивым, и все возмущения, вносимые внешним потоком или обтекаемой поверхностью, быстро затухают. Вязкость играет стабилизирующую роль.

С приближением к критическому значению  наблюдается нарушение ламинарного режима, в нем образуются турбулентные пятна, в которых происходит поперечный перенос массы. Они распределены неравномерно по пограничному слою. При увеличении  растет число этих пятен и частота их следования, пока течение не приобретает гомогенную структуру.

Турбулентное течение состоит из вихревых образований различных размеров и интенсивности, которые придают сечению нестационарный характер с пульсациями скорости в широком диапазоне. Крупные вихри порождают низкочастотную пульсацию, а мелкие – высокочастотную.

Влияние вязкости в турбулентном течении мало, и его можно представить как сложное движение идеальной жидкости. Кажущееся трение – воздействие в потоке добавочных сил, возникающих из-за поперечного переноса вещества. Оно увеличивает сопротивление каналов при переходе к турбулентному течению.

Процесс перехода: в начале локальные значения  малы и сохраняется ламинарный режим. Затем на верхней границе возникают бегущие волны и появляются турбулентные пятна. При  процесс перехода завершается.

Диапазон , в котором происходит переход, зависит от степени возмущенности потока за пределами пограничного слоя, значение градиента давления, степень шероховатости обтекаемой поверхности.

Коэффициент Дарси – характеризует потери при течении несжимаемой жидкости.

 длина трубы,  диаметр,  коэффициент потерь на трение по длине. Для ламинарного режима ; для турбулентного .

Влияние шероховатости на положение переходной зоны происходит только при больших значениях шероховатости. Если относительная шероховатость не превышает , то при расчете  ее не учитывают.


 

Билет 10

1. Нестационарное одномерное уравнение неразрывности в полных и в статических параметрах. Примеры проявления нестационарности (гидроудар, помпаж и пр.).

Пусть расход газа  на выходе из канала под влиянием некоторого внешнего возмущения уменьшится относительно расхода на входе . Тогда внутри объема  отношение полных давления и температуры начнет возрастать во времени. Очевидно, что давление торможения будет увеличиваться быстрее, чем температура торможения. Аналогично влияет на параметры и увеличение расхода на входе в канал.

При обратном соотношении параметров  параметры торможения начнинают уменьшаться, причем давление убывает в большей степени, чем температура. Итак пра накоплении или расходовании массы газа внутри фиксированного объема полное давление всегда меняется быстрее полной температуры.

Если возмущение по расходу является ступенчатым (внезапное изменение на фиксированную величину ), то в результате изменения плотности внутри выделенного участка канала расходы на входе и выходе будут выравниваться.

Работа сужающегося регулируемого сопла ГТД:

При уменьшении расхода газа через срез сопла путем уменьшения площади выходного сечения давление и температура внутри сопла возрастают. Т.к. в начальный момент времени давление перед турбиной неизменно, то рост давления за турбиной означает, что меньшее количество потенциальной энергии давления преобразуется в работу на валу турбины. Кроме того через ее последние ступени в соответствии с уравнением  начинает протекать меньший расход газа. В результате мощность турбины уменьшается, оказываясь меньше потребной для вращения компрессора. Это приводит к уменьшению частоты вращения ротора и, соответственно, расхода газа через турбину в целом, а также к уменьшению давления вдоль всего тракта двигателя. В результате расход газа на входе в сопло начинает уменьшаться вслед за первоначальным уменьшением расхода на выходе, вызванным дросселированием выходного сечения. Переходный процесс асимптотически завершается выходом на стационарное течение при пониженном режиме работы ГТД. Открытие сопла вызывает обратное действие и приводит к увеличению частоты вращения ротора, давлений внутри двигателя, расхода газа и реактивной тяги.

На скорость протекания переходных процессов оказывает влияние объем газа внутри машины или ее узла. С ростом объема время переходного процесса увеличивается. Если переходный процесс является автоколебательным (помпаж), то это приводит к уменьшению частоты колебаний, а значит и к росту их амплитуды.


 

Билет 12

1. Анализ формулы расхода. Запирание каналов по расходу (см. также уравнение Гюгонио и вопрос 8). Воздействия, способные вызвать запирание каналов по расходу.

Массовый расход зависит от рода газа, определяемого коэффициентом . Чем меньше молярная масса газа, тем меньший расход протекает через заданное сечение канала при неизменной скорости и полных параметрах.

Увеличение площади поперечного сечения, при прочих равных условиях, приводит к росту расхода. При постоянных площади сечения и скорости , расход можно изменить за счет параметров торможения. Увеличение полного давления при  повышает статическое давление и плотность газа, а значит, и массовый расход. При нагревании газов происходит их расширение и снижение плотности, что приводит к уменьшению расхода.

Если одновременно могут изменяться несколько величин, определяющих расход, то их совместное влияние становится неоднозначным. Так, в дозвуковых потоках нагрев газа приводит не только к расширению, но и к увеличению физической скорости потока, вызванному этим расширением. Т.к. в дозвуковых потоках скорость меняется быстрее плотности, то массовая плотность тока и, соответственно, ГДФ растут. Рост этих функций (иначе говоряскорости течения) компенсирует снижение массового расхода за счет нагрева, в результате он остается неизменным .



Поделиться:


Последнее изменение этой страницы: 2020-12-09; просмотров: 252; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.83.223 (0.012 с.)