Конспект книги: пункты 1–15, 32 –39 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Конспект книги: пункты 1–15, 32 –39



Конспект книги: пункты 1–15, 32 –39

Ацюковский В.А. Общая эфиродинамика. Моделирование структур вещества и полей на основе представлений о газоподобном эфире. Издание третье. М.: Энергоатомиздат, 2008. 584 с.

Конспект книги: пункты 17–31

Ацюковский В. А. Эфиродинамические основы электромагнетизма, 2-е изд. М.: изд. Энергоатомиздат, 2011 – 188 с.

Упомянутые лекции взяты из источника:

Ацюковский В. А. Эфиродинамическая картина мира. Цикл лекций 2000-2001 гг. Москва, «Петит» 2010, 540 с.

Оглавление

1 Краткая история эфира. 3

2 Недостатки известных гипотез, теорий и моделей эфира 6

3 Эфирный ветер. Реальность и фальсификация 6

4 Методология эфиродинамики. 8

5 Пути вскрытия внутренних механизмов явлений 9

6 Строение эфира. 10

7 Определение численных значений параметров эфира 11

8 Формы движения эфира 16

9 Строение газовых вихрей 22

10 Энергетика газовых вихрей 25

11 Образование и структура тороидальных газовых вихрей. Образование винтового движения 29

12 Движение газа в окрестностях тороидального вихря 31

13 Сущность силовых воздействий газовой среды на тела 33

14 Взаимодействие частиц, как вихрей 36

15 Ядерное и электромагнитное взаимодействия 39

16 Что такое "поле"? 43

17 Что такое эфир для электромагнетизма? 43

18 Как устроен протон, нейтрон, атом водорода? 45

19 Что такое электрон? 47

20 Структура свободного электрона 47

21 Что такое электрическое поле? 49

22 Что такое магнитное поле? 50

23 Электрон в электрическом поле 53

24 Электрон и протон в магнитном поле 54

Опыт. Диск Фарадея. 58

25 Что такое электрический ток? 59

26 Электрический ток в металле 59

27 Конденсатор (электроемкость) 60

28 Индуктивность. Механизм явления самоиндукции 60

29 Что такое электричество и в чём измеряется? 62

30 Химические взаимодействия. 65

Опыт. "Лептонная пена". 67

31 Металлическая связь и физическая сущность электро- и теплопроводности металлов 68

32 Краткая история оптики 70

33 Структура фотона 72

34 Отражение света 78

35 Преломление света 79

36 Интерференция света 81

37 Дифракция света 82

38 Взаимодействие лучей света 83

39 Природа гравитации 83

Литература к частям 17–31 87

Замечательным открытием Гельмгольца о законе вихревого

движения в совершенной жидкости, т.е. жидкости, совершенно

лишенной вязкости (или жидкого трения), неизбежно внушает

мысль, что кольца Гельмгольца– единственно истинные атомы.

В.Томсон Кельвин

Краткая история эфира

 

Взаимодействие между телами должно обусловливаться какой-то промежуточной средой – эфиром. В письме к Р.Бойлю 28 февраля 1679 г. Ньютон уточняет свои представления об эфире в пяти предложениях.

1. Предполагается, что по всему пространству рассеяна эфирная субстанция, способная к сжатию и расширению и чрезвычайно упругая, «одним словом, - говорит Ньютон, - во всех отношениях похожая на воздух, но только значительно более тонкая».

2. Предполагается, что эфир проникает во все тела, но в порах тел он реже, чем в свободном пространстве, и тем реже, чем тоньше поры.

3. Предполагается, что разреженный эфир внутри тел и эфир более плотный вне их переходят друг в друга постепенно и не ограничиваются резкими математическими поверхностями.

4. Предполагается, что при сближении двух тел эфир между ними становится реже, чем прежде, и область постепенного разрежения простирается от поверхности одного тела к поверхности другого. «Причина этого в том, - пишет Ньютон, - что в узком пространстве между телами эфир уже не может двигаться и перемещаться туда и сюда столь свободно».

5. «Из четвертого предложения следует, что при сближении тел и при разрежении эфира между ними при тесном сближении должно появиться сопротивление этому и стремление тел отойти друг от друга. Такое сопротивление и стремление разойтись будет возрастать при дальнейшем сближении вследствие все большего разрежения промежуточного эфира, но, наконец, когда тела сойдутся так близко, что избыток давления внешнего эфира, окружающего тела, над разреженным эфиром между телами станет настолько большим, что превозможет сопротивление тел к сближению, то избыток давления заставит тела с силою сблизиться и очень тесно сцепиться друг с другом».

Нужно заметить, что Ньютон многое предвосхитил на качественном уровне в определении свойств эфира, хотя и путал плотность эфира (разрежение) с давлением в нем. В 1717 г. на 75-м году жизни во втором английском издании «Оптики» Ньютон в форме вопросов и ответов излагает свою точку зрения относительно эфира. Так, градиент плотности эфира при переходе от тела в пространство применяется для объяснения тяготения, при этом эфир подразумевается состоящим из отдельных частиц. «Такое возрастание плотности, – пишет Ньютон, – на больших расстояниях может быть чрезвычайно медленным; однако если упругая сила этой среды чрезвычайно велика, то этого возрастания может быть достаточно для того, чтобы устремлять тела от более плотных частей среды к более разреженным со всей той силой, которую мы называем тяготением».

Ньютон сам указал на возможность обойти затруднение, возникающее вследствие сопротивления эфира движению небесных тел. «Если этот эфир предположить в 700 000 раз более упругим, чем наш воздух, и более чем в 700 000 раз разреженным, то сопротивление его будет в 600.000.000 раз меньшим, чем у воды. Столь малое сопротивление едва ли произведет заметное изменение движений планет за десять тысяч лет».

Майкл Фарадей (1791–1867), уверенный в существовании эфира («мирового эфира»), представлял его как совокупность неких силовых линий. Фарадей категорически отрицал возможность действия на расстоянии («actio in distance») через пустоту – точку зрения многих физиков того времени. Однако Фарадеем природа и принцип устройства силовых линий раскрыты не были [15–17].

Джеймс Клерк Максвелл (1831–1879) в своих работах, среди которых нужно в первую очередь отметить [18–22], делает вывод о распространении возмущений от точки к точке в мировом эфире. «Действительно, - пишет Максвелл, - если вообще энергия передается от одного тела к другому не мгновенно, а за конечное время, то должна существовать среда, в которой она временно пребывает, оставив первое тело и не достигнув второго. Поэтому эти теории должны привести к понятию среды, в которой и происходит это распространение». Максвелл не дает какой-либо модели эфира, но упоминает об эфире как о жидкости и выводит свои знаменитые уравнения в работах [20, 22], опираясь на представления Гельмгольца, Ранкина и других гидромехаников о движении вихрей в идеальной жидкой среде.

Для объяснения годичной аберрации света звезд, открытой Брадлеем в 1728 г. и достигающей 20,5", Френелем в 1818 г. впервые в письме к Араго была высказана идея о неподвижном эфире [27–29], которая впоследствии была существенно развита и дополнена Лоренцем. [31–33]. По идее Френеля, эфир представляет собой сплошную упругую среду, в которой находится вещество частиц атомов, в общем, никак не связанных с этой средой. Роль эфира – передача механических колебаний и волн. Теория Френеля–Лоренца, однако, противоречит исходному представлению об эфире как о переносчике взаимодействий. В самом деле, если эфир не принимает никакого участия в движении вещества, то и вещество не может взаимодействовать с эфиром. Для спасения гипотезы Френель предложил ввести коэффициент увлечения света средой. Опыт Физо по увлечению света движущейся средой (водой), проведенный им в 1851 г. [35] и повторенный Зееманом в 1914–1915 гг. [36], численно соответствовал коэффициенту увлечения Френеля. Несмотря на то, что численно коэффициент увлечения Френеля рассчитан с высокой точностью для многих веществ, на самом деле экспериментальная проверка его величины никем более не проводилась, а сам этот коэффициент не использован ни в одном физическом приборе…

Герцем была выдвинута идея о полном захвате эфира материей [37,38]. Гипотеза Герца, однако, находится в противоречии с экспериментом Физо, поскольку этот эксперимент показал лишь частичный захват эфира веществом. Ритц, введя в уравнения Максвелла приведенное время и по существу вернувшись к гипотезе Лоренца, получил удовлетворительное совпадение уравнений Максвелла с результатами оптических экспериментов. В результате родилась «баллистическая гипотеза» Ритца [39], из которой следовало, что движущийся источник света испускает свет со скоростью, равной в абсолютных координатах геометрической сумме скоростей света в вакууме и скорости источника. Такая постановка, приводит к положению, при котором для двойных звезд должны иметь место моменты, когда звезда, движущаяся по направлению к Земле, должна казаться движущейся вспять. Наблюдения Де-Ситтера (1913) [40] показали, что такого явления нет.

Таким образом, перечисленные гипотезы, модели и теории эфира, возникшие в XIX в., во-первых, рассматривали эфир как сплошную однородную среду с постоянными свойствами, одинаковыми для всех точек пространства и любых физических условий, во-вторых, не делали никаких предположений ни о структуре эфира, ни о характере взаимодействий между веществом и эфиром. Такое положение привело к невозможности в рамках этих теорий, фактически опирающихся на какое-либо одно частное свойство эфира, удовлетворить всему разнообразию известных явлений.

Определенный интерес представляет собой теория Ж.Л.Лесажа, призванная объяснить сущность тяготения. По Лесажу [41, 42], эфир представляет собой нечто, подобное газу, с той существенной разницей, что частицы эфира практически не взаимодействуют между собой, соударяясь чрезвычайно редко. Весомая материя поглощает частицы, поэтому тела экранируют потоки частиц эфира. Это приводит к тому, что второе тело испытывает неодинаковое с различных сторон подталкивание со стороны частиц эфира и начинает стремиться к первому телу.

Дальнейшее развитие теория получила в работе Кельвина «О вихревых атомах» (1867) [55], где эфир представлен как совершенная несжимаемая жидкость без трения. Кельвин показал, что атомы являются тороидальными кольцами Гельмгольца. Эта идея несколько ранее выдвигалась Раннигом в работе «О молекулярных вихрях» (1849–1850), где автором рассматривались некоторые простейшие взаимодействия. Возможный механизм взаимодействия эфира и вещества был рассмотрен Лармором [59].

Школа Дж.Дж.Томсона (1856–1940) продолжила эту линию. В работах «Электричество и материя», «Материя и эфир», «Структура света», «Фарадеевы силовые трубки и уравнения Максвелла» и др. [60–64] Дж.Дж.Томсон последовательно развивает вихревую теорию материи и взаимодействий. Он показал, что при известных простых предположениях выражение квантового вихревого кольца совпадает с выражением закона Планка Е = hn. Томсон, исходя из вихревой теории эфира, показал, что Е = mc². Авторство этой формулы приписывается Эйнштейну, хотя Дж.Дж.Томсон получил ее в 1903 г. задолго до Эйнштейна, а главное, из совершенно других предпосылок, чем Эйнштейн, исходя, в частности, из наличия в природе эфира.

Вихри старого Декарта снова находят почетное место во все новых областях знания. «Эфирная теория», по выражению Энгельса, «дает надежду выяснить, что является собственно вещественным субстратом электрического движения, что собственно за вещь вызывает своими движениями электрические явления». Здесь интересно еще и то, что Энгельс большое внимание уделял именно выяснению физической сущности явления, а не просто описательной абстракции.

М.В.Ломоносов (1711–1765) отвергал все специфические виды материи – теплоту, свет, признавал лишь эфир, с помощью которого он, в частности, объяснял и тяготение как результат подталкивания планет частицами эфира за счет разности давлений [69–75]. Эта идея Ломоносова была высказана раньше, чем аналогичная идея Лесажа, почти на сорок лет.

Большой интерес представляла попытка Д.И.Менделеева определить химические свойства эфира [76]. Обширные исследования по упругости газов при очень низких давлениях велись Д.И.Менделеевым с целью экспериментально подойти к эфиру. «Уже в 70-х годах, - пишет Менделеев, - у меня настойчиво засел вопрос: да что же такое эфир в химическом смысле? Сперва я полагал, что эфир есть сумма разреженных газов в предельном состоянии. Опыты велись мною при малых давлениях – для получения намеков на ответ». «Мне кажется мыслимым, что мировой эфир не есть совершенно однородный газ, а смесь нескольких близких к предельному состоянию, т.е. составлен подобно нашей земной атмосфере из смеси нескольких газов» Менделеевым эфир был включен в таблицу химических элементов в «нулевую» строку и назван «ньютонием», впоследствии эта строка из таблицы была изъята.

Миткевич отстаивал механическую точку зрения на эфир. В одной из своих работ он рассматривал «кольцевой электрон, который можно вычислить как элементарный магнитный вихрь, движущийся по жесткой орбите и вмещающийся в объем, нормально приписываемый электрону». Переносчиком энергии Миткевич считал «замкнутую магнитную линию, оторвавшуюся от источника и сокращающуюся по мере отдачи энергии», и указывал на подобие магнитного потока вихрям Гельмгольца.

Наряду с разработками теорий и моделей эфира развивалась точка зрения об отсутствии эфира как такового в природе. В 1910 г. в работе «Принцип относительности и его следствия» Эйнштейн писал, что «нельзя создать удовлетворительную теорию, не отказавшись от существования некоей среды, заполняющей все пространство». Позже в работах «Эфир и теория относительности» (1920) и «Об эфире» (1924) Эйнштейн изменил свою точку зрения относительно существования эфира, однако это обстоятельство малоизвестно, и оно не повлияло на отношение к эфиру со стороны большинства физиков-теоретиков.

В настоящее время идеи, связанные с «действием на расстоянии» продолжают развиваться, однако все чаще используется представление о «физическом вакууме», что фактически восстанавливает представления о мировой среде под другим названием. Обнаружен ряд вакуумных эффектов заставляет отказаться от представлений о вакууме как о пустоте и вновь поставить вопрос об его структуре [90, 91]. Понимание причин, почему физическое явление именно такое, позволяет учесть многие стороны, ускользающие от внимания исследователя, ограничивающегося лишь феноменологией, внешним его описанием.

К оглавлению

Методология эфиродинамики

 

На роль всеобщих физических инвариантов могут претендовать лишь такие физические величины, которые присущи абсолютно всем физическим явлениям и так или иначе проявляются существенным образом в любых формах строения материи на любом ее уровне и при любых видах взаимодействий. Единство природы заставляет и для микромира, и для макромира искать всеобщие инварианты. Никаких предпочтительных масштабов пространства и времени в природе не существует, и поэтому на всех уровнях организации материи действуют одни и те же физические законы и никаких «особых» законов для явлений микромира не существует.

С этой позиции такая величина, например, как электрический заряд не может выступать в качестве всеобщего физического инварианта. По тем же причинам в качестве всеобщих физических инвариантов не могут выступать характеристики отдельных физических явлений или отдельных форм материи, например параметры фотонов света (гравитация действует и в темноте). Рассматривая наиболее общие характеристики материи на любом уровне ее организации, можно констатировать, что для всех этих уровней существуют только четыре действительно всеобщие физические категории. Этими категориями являются собственно материя, пространство, время. Существование материи в пространстве и во времени есть движение материи. В самом деле, о любом происходящем явлении можно судить только в связи с тем, что это явление происходит с материей, а не независимо от нее (все явления материальны), в пространстве (вне пространства не происходит ничего) и во времени (все процессы протекают во времени), что само по себе уже означает движение материи. Как справедливо заметил Ф.Энгельс, в мире нет ничего, кроме движущейся материи. Использование принципов диалектического материализма на всех уровнях физического познания неизбежно приводит к евклидову пространству и однонаправленному непрерываемому времени.

Все физические взаимодействия имеют внутренний механизм и могут быть сведены к механике, т.е. к перемещениям масс материи в пространстве и во времени. Известное положение современной теоретической физики о том, что существуют четыре фундаментальных взаимодействия – сильное и слабое ядерные, электромагнитное и гравитационное, не сводимых друг к другу, верно лишь в том смысле, что друг к другу они действительно не сводятся. Но так же, как в свое время ошибался Ж.Фурье, полагавший, что тепло принадлежит к особому виду движения материи, не сводимому к механике (1822), а спустя 50 лет Л.Больцман показал, что тепло – это разновидность кинетического движения молекул, так же ошибается и современная физическая теория, полагающая, что указанные фундаментальные взаимодействия не могут быть сведены к механике.

Квантовая механика, появившаяся в 20-е годы сразу же после становления теории относительности, стала оперировать математическими абстракциями, опираясь, правда, на планетарную модель Резерфорда, выдвинутую в 1911 г., достаточно наглядную, но обладающую многими недостатками. Эти недостатки привели к многочисленным парадоксам, которые стали лечиться путем ввода постулатов и «принципов» – вольных утверждений типа аксиом. Однако беспредельное распространение постулатов и принципов приводило к новым парадоксам, которые лечились тем же способом. Сам же механизм явлений не рассматривался. Подтверждалось положение, высказанное еще в начале ХХ столетия в адрес физики В.И.Лениным: «Материя исчезла, остались одни уравнения» [11, с. 326], т.е. из физики были выброшены именно физические представления об устройстве мира. Но тем самым была проложена дорога к тупику.

Известный принцип неопределенности Гейзенберга («принцип индетерминированности») привел физиков к выводу, что в исследованиях, проведенных на квантовомеханическом уровне, принципиально не могут быть найдены точные причинные законы детального поведения индивидуальных систем и что, таким образом, необходимо отказаться в атомной области от причинности как таковой. Этим фактически был поставлен барьер в возможности познания материи и закономерностей реального мира. На самом же деле измерительная техника в силу своего несовершенства способна, конечно, исказить результаты эксперимента, если не приняты соответствующие меры, но необходимо выбирать или создавать такие измерительные средства, которые вносили бы искажения в допустимых пределах, или применять компенсационные методы, при которых измеряемая величина не искажается.

 

Строение эфира

 

Материя, пространство и время являются инвариантами, следовательно, никаких особых свойств на уровне микромира и на уровне эфира ни у материи, ни у пространства, ни у времени нет. А это значит, что эфир подчиняется тем же физическим законам, что макро- и микромир. Эфир должен представлять собой одну из обычных сред – твердое тело, жидкость или газ, ибо никаких других сред в макромире нет. По совокупности всех требований свойствам макромира удовлетворяет только газоподобная среда.

Все элементарные частицы вещества состоят из одних и тех же частей, из одного и того же строительного материала, а известный экспериментальный факт «рождения» частиц в вакууме при определенном соотношении полей может рассматриваться как факт организации этого же строительного материала, содержащегося в вакууме, в элементарные частицы вещества. Если бы такого материала в вакууме не было, то и не из чего было бы им образовываться. Следовательно, налицо единство материи физического вакуума и материи элементарных частиц вещества.

В свое время известный физик Понтекорво, столкнувшись с дефектом масс, решил, что недостающую массу уносит малая частица, не имеющая заряда. По аналогии с нейтроном он назвал ее «нейтрино», что означает «маленький нейтрон». Принципиально не должно быть возражений против такой трактовки дефекта масс. Однако следует обратить внимание и на другую возможность – рассеивания освободившегося эфира в окружающем пространстве без образования новых частиц. Эта возможность до настоящего времени не учитывалась физикой.

Возникает вопрос, каким же образом частицы эфира могут удерживаться в составе элементарных частиц вещества, если эфир является газом? Ответ на этот вопрос несложен, если учесть, что элементарные частицы вещества представляют собой тороидальные вихревые образования уплотненного газоподобного эфира. Основанием для подобного утверждения служит то обстоятельство, что именно тороидальные вихри являются единственной формой движения, способной удержать в замкнутом объеме уплотненный газ.

Различие удельной массы элементарных частиц вещества требует допущения сжимаемости среды в широких пределах – свойство, которым обладает только газоподобная среда. Значительные силы и энергии взаимодействий между телами легко можно объяснить большими давлениями и силами упругости, которыми способен обладать газ благодаря высокой скорости перемещения в пространстве его частиц.

Совместное рассмотрение всех перечисленных свойств реального мира позволяет прийти к однозначному выводу о том, что эфир – мировая среда, заполняющая все мировое пространство, образующая все виды вещества и ответственная за все виды взаимодействий, представляет собой реальный, т.е. вязкий и сжимаемый, газ. Этот газ состоит из существенно более мелких, чем элементарные частицы вещества, частиц, которые целесообразно назвать так, как они назывались в древности Демокритом, - а’мерами, т.е. физически неделимыми частями материи. Разумеется, свойством неделимости они наделены условно, временно, до накопления сведений о разнообразии амеров и их взаимных превращениях и преобразованиях.

На эфир распространяются все законы обычной газовой механики, поскольку на всех уровнях организации материи действуют одни и те же законы. Газовая механика прошла определенный путь развития в других областях естествознания и теперь может быть с успехом использована для расчетов параметров как самого эфира, так и всех материальных образований, строительным материалом для которых он является, и всех видов взаимодействий, которые он обусловливает своими движениями.

К оглавлению

 

Формы движения эфира

 

Элемент эфира – амер – обладает единственной формой движения – равномерным поступательным движением в пространстве. Взаимодействие амеров друг с другом осуществляется единственным способом – путем упругого соударения и, тем самым, обменом количеством движения (импульсами). Это соударение с большой степенью приближения можно считать абсолютно упругим, т. е. происходящим без потерь количества движения. Совокупность амеров – элементарный объем эфира – обладает тремя формами движения: диффузионной, поступательной и вращательной [7]. Диффузионная форма движения амеров в эфире есть всегда, даже когда эфир полностью уравновешен и никакого внешнего движения в нем нет. Поэтому эта форма движения является основной, исходной для рассмотрения любых других форм движений.

Эти три формы имеют следующие семь видов движения:

- диффузионная – три вида – перенос масс (если плотности в различных областях пространства разные); перенос количества движения (если в газе есть градиент скоростей потоков); перенос энергии (если в газе есть разность температур);

- поступательная – два вида – ламинарное течение (типа ветра) и первый звук (передача малого приращения давления);

- вращательная – два вида – разомкнутое вращение (типа смерча) и замкнутое вращение (типа тороида).

Перечисленные виды движения могут дать широкий спектр комбинированных видов движения, соответствующих тем или иным физическим взаимодействиям, физическим полям и явлениям.

Строение газовых вихрей

 

Начало современной теории вихревых движений положил Г.Гельмгольц, опубликовавший в 1858 г. свой мемуар «Об интеграле гидродинамических уравнений, соответствующих вихревому движению» [3, 4], в котором он впервые сформулировал теорему о сохранении вихрей. Согласно этой теореме, при силах, удовлетворяющих закону сохранения энергии, невозможно создать или уничтожить уже существующий вихрь и, более того, невозможно даже изменить напряжение последнего. Зарождение и угасание вихрей, наблюдаемые в природе, целиком определяются пассивными силами трения. Только благодаря этим силам осуществляется вихрь, и они же заставляют зародившийся вихрь потухать. Им же указана аналогия между скоростями движения частиц жидкости и силами действия гальванических токов на магнитный полюс.

Рассматривая движение двух прямолинейных параллельных вихрей в идеально несжимаемой жидкости, Гельмгольц показал, что плоскость, делящая расстояние между двумя вихрями с равными по величине напряженностями, но разными по знаку, может приниматься за стенку, если она перпендикулярна к указанному расстоянию. Вихрь будет двигаться параллельно этой стенке, и весь эффект стенки сводится, таким образом, к эффекту, происходящему от изображения вихря, если стенку рассматривать как зеркало.

Частные случаи теоремы о сохранении вихрей были уже известны Лагранжу. В своей «Аналитической механике», опубликованной в 1788 г. [5], он доказывает, что движение идеальной жидкости, обладая потенциалом скоростей в какой-либо момент времени, остается таковым за все время движения. Далее Коши и Стокс доказывали, что всякая частица идеальной жидкости никогда не получает вращения от окружающей среды, если не обладала им в начальный момент времени.

В 1839 г. шведский ученый Свенберг доказал следующую теорему: угловые скорости вращения частиц в различных положениях ее на траектории всегда обратно пропорциональны квадратам расстояния ее от траектории движения. Отсюда заключение: частица жидкости, получив в какой-либо момент угловую скорость, никогда не перестанет вращаться и, наоборот, частица жидкости не будет вращаться, если в начале движения ее угловая скорость была равна нулю.

Гринхилл в 1877–1878 гг. рассмотрел задачи о движении вихрей в жидкости, ограниченной цилиндрическими поверхностями. Пользуясь методом изображений, он решил задачи о плоском движении одного и двух вихрей внутри и вне поверхности круглого цилиндра, а также в пространстве, ограниченном поверхностью прямоугольной четырехугольной призмы.

В 1876–1883 гг. английский физик О.Рейнольдс [8] экспериментально установил критерий перехода ламинарного течения в цилиндрических трубах в турбулентное и ввел критерий, характеризующий критическое соотношение между инерционными силами и силами вязкости, при определенном значении которого ламинарное течение переходит в турбулентное и далее в вихревое. Это соотношение Re = ρvl/η, названное «числом Рейнольдса», связывает ρ –плотность жидкости, v - скорость потока, l- характерный линейный размер, η – динамический коэффициент вязкости и позволяет определить условиях образования турбулентностей и вихрей в конкретных случаях течений жидкостей вблизи различных поверхностей и форм.

Жуковский разработал теорию так называемых «присоединенных» вихрей, имеющую фундаментальное значение для многих приложений [9]. В.Томсон, основываясь на теореме о сохранении вихрей, выдвинул особую атомистическую гипотезу [10–11]. Он предположил, что все пространство Вселенной заполнено эфиром – идеальной жидкостью, в которой атомы материи представляют собой бесконечно малые замкнутые вихри, зародившиеся в этой жидкости. Разнообразие в свойствах атомов В.Томсон объяснил многообразием движений, в котором находятся частицы одного простого вещества. Вихревая теория атомов, созданная В.Томсоном, не получила признания и развития. Только в 20-х годах ХХ столетия немецкий гидродинамик А.Корн попытался вновь воскресить идеи В.Томсона, но применительно не к атомам вещества, а к толкованию природы электрона. Несколько позже Н.П.Кастерин сделал попытку построения вихревой теории элементарных частиц. Однако идеи А.Корна и Н.П.Кастерина были встречены с большим недоверием широкой научной общественностью.

В гидромеханике, как известно, принято различать ламинарное, турбулентное и вихревое движения, переход от одного из них к другому определяется числом Рейнольдса Re:

Re = vl/c,                                                             (5.3)

где v – скорость течения среды; l – характерный линейный размер; c – кинематическая вязкость среды. Переход от ламинарного движения к турбулентному начинается от значений чисел Рейнольдса порядка 2000 (по исследованиям самого Рейнольдса от 2300), однако возникающие турбулентности не обязательно сопровождаются поворотом (вращением) частиц среды. Если же при таких значениях чисел Рейнольдса происходит поворот частиц среды, то движение становится вихревым.

При движении потоков газа относительно других потоков или покоящихся масс на границах потоков возникает пограничный слой, в котором возникает градиент скоростей [22]. В пограничном слое имеет

место снижение температуры, так как

Т= Т –(Pr)0,5u²/2cP,                                            (5.4)

где Pr – число Прандтля, равное

Pr = η cP/kт;                                                          (5.5)

u - скорость границы пограничного слоя; cP – теплоемкость среды при постоянном давлении; η - динамическая вязкость; kт – коэффициент теплопроводности.

Наличие градиента скоростей эквивалентно в каждой точке среды наличию двух противоположно направленных потоков. Уменьшение температуры приводит к уменьшению в пограничном слое коэффициента динамической вязкости [18, с. 285, 316–318; 22], так как

h /hо = (Т/То)x,                  0,5 ≤ x ≤ 1.                        (4.53)

что в свою очередь повышает стабильность вихревого образования, поскольку энергия, передаваемая им соседним слоям внешней среды, уменьшается (рис. 5.2).

 

 

Экспериментальным подтверждением снижения температуры в пограничном слое является широко известный факт оледенения поверхностей крыльев летящего самолета. В пограничном слое вихря имеет место падение давления, что является следствием того, что центробежная сила, стремящаяся отбросить газ, находящийся в пограничном слое, в установившемся движении должна быть уравновешена силой, которая возникает из-за разности давлений внешней среды и слоев, находящихся в области, располагающихся ближе к центру вращения (рис. 5.3).

 

Падение вязкости в пограничном слое вихря, с одной стороны, и отброс центробежной силой газа из центральной области вихря на периферию, с другой, способствуют тому, что газовый вихрь формируется как вращающаяся труба, в стенках которой размещается основная масса вихря.

Если внутренние силы превышают внешние, элемент газа оторвется от трубы. Сумма внутренних сил оставшегося в стенках газа оказывается меньше внешних или равна им, – последнее состояние является неустойчивым. Сжатие тела вихря внешними силами – давлением окружающей среды – вызывает увеличение скорости вращения, причем внутреннее давление при этом падает, так что равновесие остается неустойчивым и вихрь продолжает сжиматься.

На элемент такой трубы действуют центробежная сила и разность внешнего и внутреннего давлений, так что

dF = adm = (Pe – Pi)dS – ω²rdm,                                    (5.7)

где dS = rhodα; а – ускорение вдоль радиуса, приобретенное массой dm; r – радиус, на котором находится эта масса от центра трубы; ho – длина отрезка трубы, dα – угол, занимаемый элементом массы dm. Как видно из выражения 5.7, при некотором значении радиуса

имеем ω² r dm > (Pe – Pi)dS, т.е. ускорение будет положительным и масса dm будет отброшена от вихря. Оставшаяся часть имеет r ≤ ro. При r < ro величина а имеет отрицательный знак, и вихрь начинает сжиматься внешним давлением. Разность сил составит:

dF = (Pe – Pi)dS = ω² r dm.                                             (5.10)

Учитывая, что

P = ρRT                                                                (5.11)

и что во внутренней области плотность ρ уменьшается за счет отброса газа центробежной силой к стенкам, имеем:

Дальнейший процесс будет определяться требованиями сохранения момента количества движения:

L = rmu = const.                                                   (5.14)

Следовательно,

Таким образом, имеет место сложная зависимость изменения сил в стенках вихря от радиуса. Если первый член с уменьшением радиуса уменьшается, то второй и третий члены увеличиваются. Сокращение радиуса будет продолжаться до тех пор, пока третий член не скомпенсирует первые два, при этом вихрь будет характеризоваться существенно повышенной плотностью газа в стенках и существенно меньшей, чем окружающая среда, температурой. В центре вихря давление будет понижено по сравнению с окружающим вихрь газом. Это понижение связано не только и не столько с уменьшением плотности газа внутри вихря, сколько с понижением температуры.

К оглавлению

 

Энергетика газовых вихрей

 

Существуют два вида вращательного движения тела с переменным радиусом. Первый вид движения – самопроизвольное, без подвода энергии. Движение тела происходит вокруг цилиндра, на который наматывается нить, удерживающая тело (крутим гайку на нитке вокруг пальца). В этом случае тело, двигаясь по инерции вокруг цилиндра, поворачивается вокруг мгновенного центра вращения, находящегося на образующей цилиндра. Нить натянута, траектория тела в каждый момент времени строго перпендикулярна нити, поэтому проекция силы натяжения нити на траекторию равна нулю. Несмотря на то, что в этом случае радиус меняется (уменьшается), тангенциальное ускорение отсутствует, масса не ускоряется, поэтому тело движется с постоянной линейной скоростью (при отсутствии потерь).

Второй вид движения тела с переменным радиусом – движение вокруг неподвижного центра при изменении радиуса за счет поступления энергии извне. Чтобы уменьшить радиус, нужно приложить силу и затратить дополнительную энергию (совершаем работу по преодолению центробежной силы – эта работа идёт на прибавку энергии). Тогда масса начнет двигаться по спирали, и при этом угол между нитью и траекторией будет меньше прямого угла. Появляется проекция центробежной силы на траекторию. и тело приобретает ускорение вдоль траектории.

 

Вращение тела: вокруг цилиндра (а); вокруг центра при изменении радиуса вращения (б); структура нижней части смерча, в которой газ движется с изменением радиуса вращения (в)

 

 

Для обычного вращательного движения (рис. 5.7,в) из подобия треугольников АА´О и аbс следует:

Δv/v = S /r = vΔt /r                                      (5.17)

или

Δv /Δt = ац = v² / r;                                     (5.18)

а из подобия треугольников ABC и AEF (рис. 5.9б) вытекает, что

аτц = - vr /vτ                                               (5.19)



Поделиться:


Последнее изменение этой страницы: 2020-11-23; просмотров: 183; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.156.35 (0.125 с.)