Б. Универсальными стимуляторами фагоцитов являются опсонизированные частицы и иммунные комплексы. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Б. Универсальными стимуляторами фагоцитов являются опсонизированные частицы и иммунные комплексы.



Опсонизация - процесс, облегчающий фагоцитоз. Обусловлен связыванием опсонинов (антител и компонента С3b комплемента) с поверхностными антигенами бактерий.

В. Лимфокины, гамма-интерферон - медиаторы, продуцируемые активированными Т-лимфоцитами в местном клеточно-опосредованном иммунном ответе, активируют макрофаги и привлекают другие провоспалительные клетки.

Для характеристики активности фагоцитоза введен фагоцитарный показатель. Для определения его подсчитывают под микроскопом число бактерий, поглощенных одним фагоцитом.

 

8) Натуральные киллеры.

Натуральные киллеры (НК или NK) или естественные киллеры (ЕК) представляют собой популяцию лимфоидных клеток, лишенных признаков Т- и В-лимфоцитов. Их участие в неспецифическом иммунном ответе состоит в способности оказывать прямое цитотоксическое действие на злокачественнотрансформированные и вирусинфицированные клетки, а также клетки, поглотившие некоторые внутриклеточные бактериальные патогены.. В процессе цитолиза различают три основных стадии:

  1. распознавание,
  2. выделение цитотоксинов («летальный удар»)
  3. лизис клетки-мишени.

 

 

           Большинство естественных киллеров являются большими гранулярными лимфоцитами, количество которых в периферической крови человека составляет приблизительно 5% от общего числа мононуклеарных клеток крови. Активностью естественных киллеров обладают также большие агранулярные лимфоциты. Естественные киллеры характеризуются рядом свойств, присущих как макрофагам, так и Т-лимфоцитам, и различаются между собой набором поверхностных антигенов, специфичностью к отдельным клеткам-мишеням, чувствительностью к активирующим сигналам, особенностями развития и др.

       Естественные киллеры описаны у человека, обезьян, свиней, лошадей, морских свинок, крыс, мышей и других животных. Мишенями для естественных киллеров являются ядросодержащие, аутологичные, сингенные, аллогенные или ксеногенные клетки, но наибольшую активность естественные киллеры проявляют в отношении опухолевых клеток. При ряде вирусных заболеваний наблюдается усиление их цитотоксической активности по отношению к клеткам, инфицированным вирусами гриппа, кори, Эпстайна — Барр, простого герпеса. Мишенями для естественных киллеров могут служить также клетки различных тканей плода и новорожденного (костного мозга, вилочковой железы).

 

        В течение длительного времени считали, что литическое действие в отношении клеток-мишеней является очень важной, но практически единственной функцией естественных киллеров в поддержании генетического гомеостаза. Дальнейшие исследования показали, что естественные киллеры обладают не только эффекторной, но и регуляторной активностью. Они способны усиливать пролиферацию Т-лимфоцитов, стимулировать ответ цитотоксических Т-лимфоцитов человека на инфицированные вирусом аутологичные клетки, тормозить антителообразование, регулировать гемопоэз и гранулоцитопоэз. Регуляторные функции естественных киллеров опосредуются, вероятно, медиаторами, выделяемыми в результате их митогенной, бактериальной или вирусной активации. Доказана продукция естественными киллерами интерлейкина-1, интерлейкина-2, альфа- и гамма-интерферонов, фактора роста В-лимфоцитов, колониестимулирующего фактора.

 

Принадлежность естественных киллеров к какой-либо из известных субпопуляций иммунокомпетентных клеток (Т-лимфоцитам, В-лимфоцитам, моноцитам) не установлена. Это связано с тем, что отдельные субпопуляции естественных киллеров несут на мембране молекулярные структуры, которые характерны для других клеток иммунной системы, например Т- и В-лимфоцитов. Возможно, что естественные киллеры являются представителями еще одной популяции — ни Т- ни В- лимфоцитов.             

               

           Неспецифические клеточные и гуморальные механизмы иммунитета, взаимодействуя и дополняя друг друга, обеспечивают раннюю и достаточно надежную защиту организма от разнообразных возбудителей. По мере развития инфекции, вызванной высоковирулентными микроорганизмами, неспецифические механизмы противоинфекционной защиты дополняются антиген-специфическими факторами иммунитета.

 

9 – 10)

Клетки иммунной системы

 

           Иммунная система представлена лимфоидными клетками, мононуклеарными фагоцитами и гранулоцитами.

 

Лимфоидные клетки включают: Т-лимфоциты, В-лимфоциты, НК-клетки. В крови человека на долю Т-лимфоцитов приходится около 70% всех лимфоцитов, на долю В-лимфоцитов – около 20%.

Т-лимфоциты выполняют следующие функции:

  • являются основными эффекторами клеточного иммунитета;
  • являются регуляторами воспаления, иммунных реакций и кроветворения;
  • участвуют в процессах репаративной и физиологической регенерации различных тканей.

 

Среди Т-лимфоцитов различают две субпопуляции клеток – CD4+-клeтки и СD8+-клетки.

По функциональным характеристикам в популяции Т-лимфоцитов выделяют

  • Т-хелперы гуморального иммунитета,
  •  Т-хелперы клеточного иммунитета,
  • Т-супрессоры,
  • Т-цитотоксические клетки.

 

В-лимфоциты – это преимущественно эффекторные иммунокомпетентные клетки, на долю которых приходится около 15% всей численности лимфоцитов. Выделяют две субпопуляции В-лимфоцитов: «обычные» В-клетки, не имеющие маркера CD5, и CD5+ В1-лимфоциты. Функции антигенспецифического рецептора (BCR) выполняют особые мембранные формы иммуноглобулинов. Клетки экспрессируют МНС II класса, ко-стимулирующие молекулы CD40, 80, 86, низкоаффинные FcR(к иммунным комплексам и нативным молекулам иммуноглобулина класса G), рецептор к эритроцитам мыши, иммуноцитокинам и др.

Зрелые В-лимфоциты и их потомки- плазматические клетки (плазмоциты) являются антителопродуцентами. Их основным продуктом являются иммуноглобулины. Кроме того, В-лимфоциты являются профессиональными АПК (антигенпрезентующая клетка). Они участвуют в формировании гуморального иммунитета, В-клеточной иммунологической памяти и гиперчувствительности немедленного типа.

Дифференцировка и созревание В-лимфоцитов происходят сначала в костном мозге, а затем в периферических органах иммунной системы, куда они отселяются на стадии предшественников. Потомками В-лимфоцитов являются клетки иммунологической памяти и плазматические клетки. Основные морфологические признаки последних – обширная цитоплазма, развитый эндоплазматический ретикулум и аппарат Гольджи с большим количеством рибосом. Активно синтезирующий плазмоцит живет недолго, не более 2-3 суток.

Функциональной активностью В-лимфоцитов управляют растворимые антигены и иммуноцитокины Т2-хелпера, макрофага и других клеток, например ИЛ-4,5,6.

 

 

Т-лимфоциты

Сложная по составу группа клеток,которая происходит от полипотентной стволовой клетки костного мозга, а созревает и дифференцируется в тимусе из предшественников (пре-Т-лимфоциты). На долю этих клеток приходится около 75% всей лимфоидной популяции. Их общим маркером является CD3, а также рецептор к эритроцитам барана.

В зависимости от строения Т-клеточного антигенного рецептора (TCR) и функциональной направленности сообщество Т-лимфоцитов может быть разделено на отдельные группы.

           Различают два типа TCR: альфа-бетта и гамма-дельта. Первый тип – гетеродимер, который состоит из двух полипептидных цепей – альфа и бета; он характерен для традиционных Т-лимфоцитов, известных как Т-хелперы и Т-киллеры. Второй тип обнаруживается на поверхности особой популяции гамма-дельтаТ-лимфоцитов.

Профессионально Т-лимфоциты также разделяют на две субпопуляции: иммунорегуляторы и эффекторы. Задачу регуляции иммунного ответа (в основном активирующую) выполняют Т-хелперы. Предполагалось существование Т-супрессоров, которым приписывали функцию торможения развития иммунной реакции (супрессии). Однако до сих пор клетка морфологически не идентифицирована, хотя сам супрессорный эффект существует. Эффекторную функцию осуществляют цитотоксические лимфоциты: Т-киллеры и естественные киллеры.

В организме Т-лимфоциты обеспечивают клеточные формы иммунного ответа (гиперчувствительность замедленного типа, трансплантационный иммунитет, противоопухолевый иммунитет и т.д.), определяют силу и продолжительность иммунной реакции. Их созреванием, дифференцировкой и активностью управляют цитокины.

 

Т-хелперы

Или Т-помощники- субпопуляция Т-лимфоцитов, которые выполняют регуляторную функцию. На долю этих клеток приходится около 75% всей популяции Т-лимфоцитов. На наружной поверхности их цитоплазматической мембраны определяются молекулы CD4, а также альфа-бетта Т-клеточные рецепторы (TCR) к антигену, представленному в комплексе с МНС II класса. При помощи специфического рецептора Т-хелпер анализирует информацию, передаваемую ему АПК (антигенпрезентующая клетка).

Рецепция антигена Т-хелпером, т.е. анализ его чужеродности,- сложный процесс, требующий высокой точности. Ему способствует множество факторов:

  • Молекула CD3, комплексирующая с TCR
  • Ко-рецепторные молекулы CD4, имеющие сродство к молекулярному комплексу МНС II класса
  • Молекулы адгезии, стабилизирующие межклеточный контакт
  • Рецепторы, взаимодействующие с ко-стимулирующими факторами АПК (CD28, 40L)

Продуктивная рецепция стимулирует Т-хелпер к продукции широкого спектра иммуноцитокинов, при помощи которых он управляет биологической активностью множества клеток, вовлеченных в иммунный ответ.

Установлена гетерогенность популяции Т-хелперов. Активированный CD4+ Т-лимфоцит (Т0-хелпер) дифференцируется в одного из своих потомков:Т1 или Т2-хелпер. Эта дифференцировка является альтернативной, ее направление определяют цитокиновые стимулы. Т1- или Т2-хелперы различаются лишь функционально – по спектру продуцируемых цитокинов.

           Т1-хелпер образует ИЛ-2,-3,гамма-ИФН, фактор некроза опухолей (ФНО) и другие, необходимые для развития клеточного иммунного ответа, гиперчувствительности замедленного типа, иммунного воспаления. Потребность в этой клетке определяет активированный макрофаг, естественный и Т-киллеры, синтезирующие ИЛ-12 и гамма-ИФН.

           Т2-хелпер продуцирует ИЛ-4,5,6,9,10,13 и др., которые поддерживают гуморальный иммунный ответ, а также гиперчувствительность немедленного типа. Дифференцировку в сторону Т2-хелперов потенцируют гамма-дельтаТ-клетки, базофилы, тучные клетки и эозинофилы, синтезирующие ИЛ-4 и -13.

           В организме поддерживается баланс Т1-/Т2-хелперов. Он необходим для развития адекватного иммунного ответа. Сами клетки находятся в конкурентных взаимоотношениях, они оппозитно тормозят клональное развитие друг друга. Установлено, что в организме новорожденных преобладают Т2-хелперы. Нарушение заселения ЖКТ нормальной микрофлорой тормозит развитие субпопуляции Т1-хелперов и ведет к аллергизации организма.

 

 

T-киллеры

Т-киллер – субпопуляция Т-лимфоцитов-эффекторов. На долю их приходится примерно 25% всей популяции Т-лимфоцитов. На поверхности цитоплазматической мембраны Т-киллера определяются молекулы CD8, а также альфа-бетта TCR к антигену в комплексе с МНС I класса, по которому «свои» клетки отличаются от «чужих». В рецепции принимают участие молекула CD3, комплексирующая с TCR, и ко-рецепторные молекулы CD8, тропные к МНС I класса.

           Т-киллер анализирует клетки собственного организма в поисках измененной, т.е. отличной от собственной, структуры комплекса антиген-МНС I класса. Мутантные клетки, клетки, пораженные вирусом, или клетки аллогенного трансплантата несут на своей поверхности такие признаки генетической чужеродности. Поэтому они являются мишенью Т-киллера.

           Т-киллер устраняет клетки-мишени путем антителонезависимой клеточно-опосредованной цитотоксичности, для чего синтезирует ряд токсических субстанций: перфорин, гранзимы и гранулизин.

           Перфорин - токсический белок, который синтезируют цитотоксические лимфоциты – Т-киллеры и естественные киллеры. Обладает неспецифическим действием. Вырабатывается только зрелыми активированными клетками, незрелые неиммунные клетки перфорин не синтезируют. Перфорин образуется в виде растворимого белка-предшественника и накапливается в цитоплазме в гранулах, которые сосредотачиваются около TCR, связавшегося с клеткой-мишенью.»Ориентированность» поTCR необходима для обеспечения локального, «адресного» эффекта – повреждения только пораженных или измененных клеток-мишеней.

Содержимое гранул высвобождается в узкую щель, образованную тесным контактом цитотоксического лимфоцита и клетки-мишени. За счет гидрофобных участков перфорин встраивается в цитоплазматическую мембрану клетки-мишени, где в присутствии ионов Ca2+ полимеризуется в трансмембранную пору диаметром 16 нм. Образовавшийся дефект цитоплазматической мембраны подобно действию комплемента может вызвать осмотический лизис клетки-мишени (некроз) и/или обеспечить проникновение в нее гранзимов и гранулизина.

           Гранзимы – это обобщающее название сериновых протеаз, синтезируемых зрелыми активированными цитотоксическими лимфоцитами.

Различают три типа гранзимов: А,В и С. После синтеза гранзимы накапливаются в гранулах подобно перфорину и вместе с ним выделяются из клетки в синаптическую щель. В клетку-мишень проникают через поры, образованные перфорином.

Мишенью для гранзимов являются внутриклеточные специальные ферменты, инициирующие апоптоз, которые обладают широкой нуклеазной активностью, в том числе разрушают нуклеиновые кислоты внутриклеточных паразитов. Таким образом, гранзимы индуцируют гибель клетки путем апоптоза и санацию организма от зараженных клеток.

           Гранулизин – эффекторное вещество с ферментативной активностью, синтезируемое цитотоксическими лимфоцитами. Способно запускать в клетках-мишенях апоптоз, повреждая мембрану их митохондрий.

           Т-киллер обладает огромным биологическим потенциалом – его называют «серийным убийцей». За короткий срок он может уничтожить несколько клеток-мишеней, затрачивая на каждую около 5 минут. Эффекторную функцию Т-киллера стимулирует Т1-хелпер, хотя в ряде случаев его помощь не требуется.

Т-киллеры обеспечивают в организме антителонезависимую клеточно-опосредованную цитотоксичность, формирование Т-клеточной иммунологической памяти и гиперчувствительности замедленного типа. Кроме того, активированный Т-киллер синтезирует гамма-ИФН и ФНО (фактор некроза опухолей), стимулирующие иммунное воспаление

 

Гамма-дельта T-клетки

                                                                         (Т – клеточные рецепторы)

5-10% T-клеток несут на своей поверхности ТКРгамма-дельта и обозначаются как гамма-дельта T-клетки. Они практически полностью локализуются в эпидермисе и слизистой желудочно-кишечного тракта. Антигенный рецептор гамма-дельтаТ-лимфоцита сходен с ВCR(В-клеточный рецептор), его активный центр непосредственно связывается с эпитопом антигена. В отличие от альфа-бетта-типа, гамма-дельта Т-клеточный рецептор не требует для рецепции процессинга антигена, а также его презентации в комплексе с молекулами МНС. Иммунорецептор гамма-дельтаТ-лимфоцита обладает узким «репертуаром» специфичности. Клетки ориентированы на распознавание некоторых широко распространенных микробных антигенов (липопротеинов, белков теплового шока, бактериальных суперантигенов и др.). Клетки принимают участие в удалении патогенов на ранних этапах противоинфекционной защиты.

Гамма-дельтаТ-лимфоциты могут быть как эффекторными, цитотоксическими клетками, так и регуляторами иммунореактивности. Они синтезируют цитокины, активирующие местный иммунитет и локальную воспалительную реакцию, в том числе усиливают образование Т2-хелперов. Кроме того, гамма-дельта-клетки продуцируют ИЛ-7 и контролируют тем самым численность собственной популяции.

 

11) По степени чужеродности: ксено-, алло- и изоантигены.

Ксеногенные антигены (или гетерологичные) — общие для организмов, стоящих на разных ступенях эволюционного развития, например, относящиеся к разным родам и видам. Впервые феномен общности ряда антигенов у животных различных видов был отмечен Д. Форсманом (1911). Ученый иммунизировал кролика суспензией органов морской свинки. Оказалось, что полученная в ходе эксперимента иммунная сыворотка была способна взаимодействовать не только с антигенами морской свинки, но также агглютинировать эритроциты барана. Позже было установлено, что морская свинка и баран имеют ряд структурно сходных антигенных детерминант, дающих перекрестное реагирование. В дальнейшем перечень подобных ксеногенных антигенов был расширен десятками и сотнями пар и даже триплетов, которые формировали между собой как теплокровные, так и холоднокровные животные, растения и микробы. Все эти антигены получили обобщенное название антигены Форсмана. В настоящее время антигены Форсмана рассматривают в историческом аспекте, а исследование гетероантигенов широко применяется в судебно-медицинской экспертизе, палеонтологии и других областях медицины и естествознания.

Аллогенные антигены (или групповые) — общие для генетически неродственных организмов, но относящихся к одному виду. На основании аллоантигенов общую популяцию организмов можно подразделить на отдельные группы. Примером таких антигенов у людей являются антигены групп крови (системы АВО и др.) и многие другие. Аллогенные ткани при трансплантации иммунологически несовместимы — они отторгаются или лизируются реципиентом. Микробы на основании групповых антигенов могут быть подразделены на серогруппы. Это имеет большое значение для микробиологической диагностики (например, классификация сальмонелл Кауфмана—Уайта) и эпидемиологического прогнозирования.

Изогенные антигены (или индивидуальные) — общие только для генетически идентичных организмов, например для однояйцовых близнецов, инбредных линий животных. Изотрансплантаты обладают практически полной иммунологической совместимостью и не отторгаются реципиентом при пересадке. Примером таких антигенов в популяции людей являются антигены гистосовместимости, а у бактерий — типовые антигены, не дающие дальнейшего расщепления. В пределах отдельного организма в определенных анатомо-морфологических образованиях (например, органах или тканях) обнаруживаются специфичные для них антигены, которые в других органах и тканях больше не встречаются. Это, например, раковоэмбриональные антигены (альфа-фетопротеин, трансферрин). Такие антигены получили обобщенное название органо- и тканеспецифических. Отдельным критерием классификации является направленность активации и обеспеченность иммунного реагирования в ответ на внедрение антигена. В зависимости от физико-химических свойств вещества, условий его внедрения, характера реакции и реактивности макроорганизма различают иммуногены, толерогены и аллергены.

Иммуногены при попадании в организм способны индуцировать продуктивную реакцию иммунной системы, которая заканчивается выработкой факторов иммунитета (антитела, антигенореактивные клоны лимфоцитов). В клинической практике иммуногены используют для иммунодиагностики, иммунотерапии и иммунопрофилактики многих патологических состояний.

Толероген является полной противоположностью иммуногену. При взаимодействии с системой приобретенного иммунитета он вызывает включение альтернативных механизмов, приводящих к формированию иммунологической толерантности или неотвечаемости на эпитопы данного толерогена. Толерогену, как правило, присуща мономерность, низкая молекулярная масса, высокая эпитопная плотность и высокая дисперсность (безагрегатность) коллоидных растворов. Толерогены используют для профилактики и лечения иммунологических конфликтов и аллергии путем наведения искусственной неотвечаемости на отдельные антигены.

Аллерген также воздействует на систему приобретенного иммунитета. Однако, в отличие от иммуногена, производимый им эффект формирует патологическую реакцию организма в виде гиперчувствительности немедленного или замедленного типа. По своим свойствам аллерген не отличается от иммуногена. В клинической практике аллергены применяют для диагностики инфекционных и аллергических заболеваний.

           Среди иммуногенов выделяют две группы антигенов, различающихся по необходимости вовлечения Т-лимфоцитов в индукцию иммунного ответа. Это — Т-зависимые и Т-независимые антигены.

           Иммунная реакция в ответ на введение Т-зависимого антигена реализуется при обязательном участии Т-лимфоцитов (Т-хелперов). К Т-зависимым относится большая часть известных антигенов.

           В то же время для развития иммунного ответа на Т-независимые антигены не требуется привлечение Т-хелперов. Эти антигены способны непосредственно стимулировать В-лимфоциты к антителопродукции, дифференцировке и пролиферации, а также вызывать иммунный ответ у бестимусных животных. Т-независимые антигены имеют относительно простое строение. Это крупные молекулы с молекулярной массой более 103 кДа, они поливалентны и имеют монотонно повторяющиеся последовательности с многочисленными однотипными эпитопами.

Т-независимые антигены обладают митогенным действием и способны индуцировать поликлональную реакцию. В качестве примера можно привести полимерную форму флагеллина (сократительный белок жгутиков бактерий), Л ПС, туберкулин, сополимеры D-аминокислот и др.

 От Т-независимых антигенов следует отличать суперантигены. Это условный термин, введенный для обозначения группы веществ, в основном, микробного происхождения, которые могут неспецифически вызывать поликлональную реакцию. В организме в обход естественного процессинга антигена цельная молекула суперантигена способна вмешиваться в кооперацию антигенпрезентирующей клетки и Т-хелпера и нарушать распознавание «свой-чужой». Установлено, что молекула суперантигена самостоятельно связывается с межклеточным комплексом «антиген гистосовместимости II класса — Т-клеточный рецептор» и формирует ложный сигнал распознавания чужеродной субстанции. В процесс неспецифической активации одновременно вовлекается огромное количество Т-хелперов (до 20 % от общей массы и более), возникает гиперпродукция цитокинов, за которой следует поликлональная активация лимфоцитов, их массовая гибель вследствие апоптоза и развитие вторичного функционального иммунодефицита. На сегодняшний день свойства суперантигена обнаружены у стафилококкового энтеротоксина, белков вирусов Эпштейна—Барр, бешенства, ВИЧ и некоторых других микробных субстанций.

 

12) Антигены групп крови человека

Группы крови — это генетически наследуемые признаки, не изменяющиеся в течение жизни при естественных условиях. Группа крови представляет собой определённое сочетание поверхностных антигенов эритроцитов (агглютиногенов) системы АВ0.

 

Определение групповой принадлежности широко используется в клинической практике при переливании крови и её компонентов, в гинекологии и акушерстве при планировании и ведении беременности.

 

Система групп крови AB0 является основной системой, определяющей совместимость и несовместимость переливаемой крови, т. к. составляющие её антигены наиболее иммуногенны. Особенностью системы АВ0 является то, что в плазме у неиммунных людей имеются естественные антитела к отсутствующему на эритроцитах антигену. Систему группы крови АВ0 составляют два групповых эритроцитарных агглютиногена (А и В) и два соответствующих антитела - агглютинины плазмы альфа (анти-А) и бета (анти-В).

Различные сочетания антигенов и антител образуют 4 группы крови:

Группа 0 (I) — на эритроцитах отсутствуют групповые агглютиногены, в плазме присутствуют агглютинины альфа и бета;

Группа А (II) — эритроциты содержат только агглютиноген А, в плазме присутствует агглютинин бета;

 Группа В (III) — эритроциты содержат только агглютиноген В, в плазме содержится агглютинин альфа;

Группа АВ (IV) — на эритроцитах присутствуют антигены А и В, плазма агглютининов не содержит.

Определение групп крови проводят путём идентификации специфических антигенов и антител (двойной метод или перекрёстная реакция).

           Несовместимость крови наблюдается, если эритроциты одной крови несут агглютиногены (А или В), а в плазме другой крови содержатся соответствующие агглютинины (альфа- или бета), при этом происходит реакция агглютинации. Переливать эритроциты, плазму и особенно цельную кровь от донора к реципиенту нужно строго соблюдая групповую совместимость. Чтобы избежать несовместимости крови донора и реципиента, необходимо лабораторными методами точно определить их группы крови. Лучше всего переливать кровь, эритроциты и плазму той же группы, которая определена у реципиента. В экстренных случаях эритроциты группы 0, но не цельную кровь!, можно переливать реципиентам с другими группами крови; эритроциты группы А можно переливать реципиентам с группой крови А и АВ, а эритроциты от донора группы В — реципиентам группы В и АВ.

Групповые агглютиногены находятся в строме и оболочке эритроцитов. Антигены системы АВО выявляются не только на эритроцитах, но и на клетках других тканей или даже могут быть растворёнными в слюне и других жидкостях организма.

Резус-фактор - это антиген (белок), который находится на поверхности эритроцитов, красных кровяных телец. Около 85% людей имеют этот самый резус-фактор и, соответственно, являются резус-положительными. Остальные же 15%, у которых его нет, резус-отрицательны. Обычно отрицательный резус-фактор никаких неприятностей его хозяину не приносит. Особого внимания и ухода требуют лишь резус-отрицательные беременные женщины. Наличие или отсутствие резус-фактора не зависит от групповой принадлежности по системе АВ0 и не изменяется в течение жизни.

 

13) Антигенная специфичность и антигенное строение бактерий.

Для характеристики микроорганизмов выделяют родовую, видовую, групповую и типовую специфичность антигенов. Наиболее точная дифференциация осуществляется с использованием моноклональных антител (МКА), распознающих только одну антигенную детерминанту.

 

Обладая сложным химическим строением, бактериальная клетка представляет целый комплекс антигенов. Антигенными свойствами обладают жгутики, капсула, клеточная стенка, цитоплазматическая мембрана, рибосомы и другие компоненты цитоплазмы, токсины, ферменты.

 

Основными видами бактериальных антигенов являются:

 

- соматические или О- антигены (у грамотрицательных бактерий специфичность определяется дезоксисахарами полисахаридов ЛПС);

 

- жгутиковые или Н- антигены (белковые);

 

- поверхностные или капсульные К- антигены.

 

Выделяют протективные антигены, обеспечивающие защиту (протекцию) против соответствующих инфекций, что используется для создания вакцин.

Любой микроорганизм (бактерии, грибы, вирусы) представляет собой комплекс антигенов.

 

По специфичности микробные антигены делятся на:

  • перекрестно-реагирующие (гетероантигены) - это антигены общие с антигенами тканей и органов человека. Они имеются у многих микроорганизмов и рассматриваются как важный фактор вирулентности и пусковой механизм развития аутоиммунных процессов;

 

  • группоспецифические - общие у микроорганизмов одного рода или семейства;

 

  • видоспецифические - общие у разных штаммов одного вида микроорганизмов;

 

  • вариантспецифические (типоспецифические) - встречаются у отдельных штаммов внутри вида микроорганизмов. По наличию тех или иных вариантспецифических антигенов микроорганизмы внутри вида делят на варианты по антигенному строению - серовары.

           Все типы антигенов у многих видов патогенных микробов отличаются неоднородностью. На этом основании их подразделяют на варианты обозначаемые цифрами или буквами. Полная антигенная формула включает все обнаруженные у данного штамма микроорганизма варианты антигенов. Например, у кишечной палочки может быть такая антигенная формула: 0 17: К 6: Н 5.

 

 

По локализации антигены бактерий делятся на:

  • целлюлярные (связанные с клеткой),

 

  • экстрацеллюлярные (не связанные с клеткой).

 

Среди целлюлярных антигенов основными являются: соматический - О-антиген (глюцидо-липоидо-полипепдидный комплекс), жгутиковый - Н-антиген (белок), поверхностные - капсульные - К-антиген, Vi-антиген.

 

Экстрацеллюлярные антигены - это продукты, секретируемые бактериями во внешнюю среду, в том числе антигены экзотоксинов, ферментов агрессии и защиты, и другие.

Антигены вирусов

В структуре вирусной частицы различают несколько групп антигенов:

  • ядерные (или к о ровые)
  • капсидные (или оболочечные)
  • суперкапсидные.

На поверхности некоторых вирусных частиц встречаются особые V-антигены- гемагглютинин и фермент нейраминидаза.

Антигены вирусов различаются по происхождению. Часть из них – вирусоспецифические. Информация об их строении картирована в нуклеиновой кислоте вируса. Другие антигены вирусов являются компонентами клетки хозяина (углеводы, липиды), они захватываются во внешнюю оболочку вируса при его рождении путем почкования.

Антигенный состав вириона зависит от строения самой вирусной частицы. Антигенная специфичность простоорганизованных вирусов связана с рибо- и дезоксирибонуклеопротеинами. Эти вещества хорошо растворяются в воде и поэтому обозначаются как S-антигены (от лат. Solution- раствор).

У сложноорганизованных вирусов часть антигена связана с нуклеокапсидом, а другая – локализуется во внешней оболочке – суперкапсиде.

Антигены многих вирусов отличаются высокой степенью изменчивости. Это связано с постоянным мутационным процессом, который претерпевает генетический аппарат вирусной частицы. Примером могут служить вирус гриппа, вирысы иммунодефицитов человека.

 

14) Аггистосовместимости

 



Поделиться:


Последнее изменение этой страницы: 2020-11-23; просмотров: 88; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.137.218 (0.094 с.)