Проблемы кровеносной системы 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Проблемы кровеносной системы



Кровеносная система человека является сложнейшим устройством, которое великолепно работает на самых разных уровнях организации живой материи и действует как механическое, гидравлическое и даже биохимическое устройство. Наше тело сложено из 1000 триллионов клеток, для нормального существования которых требуется 10 млн л воды, богатой минеральными и органическими веществами, а также кислородом. Кровеносная система, перекачивающая кровь и обновляющая ее, справляется с этой задачей, транспортируя к клеткам одновременно строительный материал, химические носители энергии и вещества, являющиеся защитниками нашего здоровья.

Кровоток -это сплошной поток плотностью 1,06 г/см3. Он протекает по сети кровеносных сосудов, которая включает в себя большие вены и артерии, многократно ветвящиеся и постепенно уменьшающиеся до размеров крохотных капилляров. Через тончайшие стенки капилляров легко просачиваются различные вещества, отчего в живых тканях происходит непрерывный обмен: кровь отдает клеткам организма вещества, поддерживающие жизнь, и вымывает продукты распада.

Общая протяженность всех сосудов нашего тела насчитывает порядка 150 тыс. км, а их площадь приближенно составляет 7000 м2, что равняется площади 10 футбольных полей. На каждый квадратный сантиметр мышечной ткани приходится от 3000 до 5000 капилляров и более. Из этих сосудов постоянно функционируют лишь 10%, остальные "отдыхают", являясь закрытыми. Они подключаются к работе лишь во время выполнения человеком движений, связанных с очень большими физическими нагрузками.

Поскольку транспортные функции сосудистой системы несколько различаются, то это обусловливает и соответствующие различия в строении кровеносных сосудов. Крупные артерии и вены служат главным образом для переноса крови. Через стенки даже очень больших артерий постоянно протекает обмен веществ с окружающими тканями, но он очень слаб.

Многоступенчатый механизм коагуляции иногда срабатывает понапрасну, если его активизирует какой-нибудь болезненный процесс. Воспаление, изменение состава крови, атеросклероз, инфекционное поражение стенок сосудов и прочие негативные явления в организме заставляют кровеносную систему интенсивно вырабатывать и накапливать фибриноген. Организм делает это, чтобы упрочнить сосуды, но эффект получается прямо противоположный.

В узких участках сосудов скапливаются лишние тромбы, затрудняющие движение крови. Кровоток постепенно блокируется, в т. ч. спасительная жидкость может вообще не достигать какого-либо участка. Если произойдет закупорка сосуда, ведущего в сердце или головной мозг - а происходит это, к сожалению, довольно часто, - наступит неизбежная смерть. По этой причине в мире ежегодно умирает несколько миллионов человек.

Впрочем, с сердечно-сосудистой системой связаны и другие многочисленные проблемы. Одна из них - повышенное артериальное давление, которое нередко выступает в качестве самостоятельного заболевания под названием гипертонии. Разумеется, движение абсолютно любой жидкости по системе каналов всегда должно поддерживаться нагнетанием давления. Именно за счет давления крови она попадает из больших сосудов в мелкие.

Сокращения сердечной мышцы создают в жидкости т. н. избыточное давление, иначе говоря, напряжение, превышающее давление воздуха, который окружает наше тело. Избыточное давление, названное в медицине артериальным, измеряется от условного нуля, в качестве которого как раз и выступает атмосферное давление. Каждую минуту спокойной работы сердце пропускает через себя 3,6 кг (около 3,6 л) крови, чтобы поддерживать это внутреннее напряжение. Оно максимально в момент сокращения - систолы, тогда как во время диастолы, расслабления миокарда, падает до нуля.

Нарушения кровообращения, в особенности почечного, или болезни сердца влекут за собой повышение давления, которым организм пытается скомпенсировать происходящие в нем патологические изменения. Одной из наиболее частых причин повышения артериального давления являются различные нежелательные процессы в тканях клеточных стенок, активизирующиеся во время некоторых заболеваний, обменных нарушений, возрастных изменений в организме и т. д.

Искусственное старение сосудов, выраженное в снижении их эластичности, сопровождает гипертоническую болезнь и многие другие заболевания. В результате стрессов и общей нервозности в организме происходит травмирование сосудов за счет чрезмерного раздражения их мускулатуры перевозбужденными нервами. В результате развивается гипертония. Прочность сосудов снижается, в них наблюдаются склеротические явления.

Перечислять проявления патогенеза при разнообразных расстройствах можно до бесконечности. В любом случае состояние сосудов и их стенок, которое регулируется биохимическими процессами, связанными с деятельностью фибриногена и прочих белковых веществ, так или иначе влияет на артериальное давление.

Другим условием исправного функционирования кровеносной системы является поддержание постоянной скорости тока крови в сосудах. Кровь должна передвигаться со строго определенной скоростью. Во-первых, благодаря этому поддерживается нормальное давление в сосудах. А во-вторых, и это самое главное, только таким путем достигается полноценное обеспечение кислородом и питательными веществами различных тканей.

Скорость кровотока задается интенсивностью сердцебиений, артериальным давлением и величиной просвета кровеносных сосудов. Перепад артериального давления между периодами систолы и диастолы порождает волну давления со скоростью 25 м/с, т. е. 90 км/ч! За счет таких волн в артериях поддерживается скорость крови, равная 50 см/с, а в венах - 20 см/с. В капиллярах течение крови замедляется по причине их мелкого поперечного диаметра. Здесь скорость кровотока насчитывает максимум 2 мм/с, а пульсовые колебания гасятся. Равномерное движение жидкости создает оптимальные условия для обмена веществ в тканях.

В ряде случаев замедление кровотока в мелких артериях, венах и, естественно, капиллярах обусловлено инфекциями, низким мышечным тонусом, гипотонией, недостаточной физической активностью человека (гиподинамией) и т. п. В таких случаях в сосудах и прилегающих тканях, а также в питаемых кровью органах происходят негативные перемены. Здесь отмечаются конгестивные, или застойные, явления.

Застой влечет за собой дальнейшее развитие гипотонии, проблемы с нервной системой, нередко половые расстройства, атрофию многих тканей, нарушения баланса жидкостей в тканях и, как следствие последнего, вялость, отечность и головные боли. Конгестивные явления сопровождаются воспалительным процессом, который прогрессирует по мере увеличения области, в которой отмечается застой. Сами сосуды испытывают перерождение, в них происходят опасные превращения белков кровяной плазмы.

Атеросклероз опасен во многих отношениях. Это заболевание, имеющее различные формы, заключается в появлении на стенках кровеносных сосудов т. н. атеросклеротических бляшек, сложенных жироподобным веществом холестерином. Атеросклероз приводит к патологическим изменениям поверхности эндотелия сосудов. В результате в крови начинаются биохимические процессы, призванные залечить стенки сосудов. Лечение оказывается неуспешным, зато в кровотоке возникают тромбы.

В заключение следует упомянуть те случаи, когда биохимический механизм защиты, срабатывая адекватно ситуации, оказывается неисправным. Вследствие этого формирование и последующее рассасывание тромбов происходит неверно, некоторые сгустки отрываются от места травмы и попадают в кровяное русло, грозя закупоркой какого-нибудь сосуда.

Впрочем, известны и отклонения, касающиеся свертываемости крови, носящие обратный характер. К ним относятся гемофилия и сходные нарушения процесса коагуляции, которые выражаются в неспособности образовывать тромбы.

Таким образом, человеческое тело является компактной, но при этом невероятно мощной и тонко устроенной лабораторией. Ежесекундно в каждой физиологической системе (а их, больших и малых, насчитывается порядка 100) происходят до 100 000 и более сложнейших химических реакций. Следовательно, за сутки в нашем теле протекает примерно 864 млрд повторяющихся изо дня в день биохимических превращений.

Вероятно, почти 40 млрд из этих реакций призваны непосредственно поддерживать стабильное и исправное функционирование большой кровеносной системы, включающей в себя несколько мелких систем, т. н. "субъединиц". Остальные превращения слагающей наше тело органики связаны с кровообращением косвенно. Понятно, почему алхимики средневековья не смогли в свое время отыскать ни панацею, ни чудодейственный эликсир. Ведь такое лекарство должно было воздействовать сразу на все 10 млн реакций, протекающих в организме каждую секунду.

Отсюда следует, что и слюна пиявки не является средством от всех болезней, а трудотерапия имеет определенные ограничения в применении. Не дает использование пиявок и полного исцеления при многих болезнях, хотя и значительно улучшает состояние человека.

И все-таки экстракт из секрета слюнных желез медицинской пиявки принадлежит к категории сильнодействующих препаратов.

Он представляет собой смесь активных веществ, сгруппированных таким образом, что они оказывают комплексное воздействие. Все биохимические реакции в кровеносной системе взаимосвязаны. Сочетание компонентов экстракта уникально, оно в полной мере соответствует важнейшим биохимическим процессам, протекающим в жидкой ткани, в их взаимодействии. Этим и объясняется наличие положительного терапевтического эффекта от "пиявочного кровопускания".

 

Тайны пиявочного экстракта

Лишь немногих из гирудиней можно назвать настоящими паразитами, это главным образом те черви, которые поселяются на рыбах. Любители теплой крови - челюстные пиявки - лишены возможности постоянно держаться на теле своей жертвы. Они были вынуждены научиться успевать быстро насосаться крови про запас и затем неторопливо расходовать свою пищу в течение дней и даже недель. Оно и неудивительно, ведь крупные животные, к которым можно было присосаться, не так часто попадали в воду.

Кроме того, обнаружить жертву, догнать ее и закрепиться на ней невероятно трудно. Из 200 попыток медицинской пиявки атаковать своего возможного хозяина успешной оказывается только одна. Не надеясь на удачную охоту каждый день, черви-кровососы выработали в процессе эволюции ряд физиологических адаптации. Некоторые из этих приспособлений имеют сугубо анатомическое значение, т. е. связаны со строением и функционированием челюстей, присосок, внутренних органов и пр.

Как бы то ни было, энергетические затраты при такого рода превращениях несказанно возрастают. Охота и паразитизм становятся неэффективными, и вид вымирает в безжалостной конкурентной борьбе, оказавшись неспособным прокормить себя.

Типичным примером такого эволюционного тупика являются динозавры, представители мезозоя, носившие на себе бесчисленные шипы, пластины, рога и т. д. Все эти рептилии вымерли 65 млн лет назад. Сходным образом некогда исчезли с лица планеты многие гигантские беспозвоночные. Гирудиней же отказались от наращивания массы, зубов, присосок и всяческих "орудий".

Подобно большинству мелких бесскелетных созданий, пиявки обзавелись индивидуальными средствами из класса химического "оружия". Химические вещества компактны, их удобно хранить и легко вырабатывать в случае необходимости. А главное, химическое "оружие" всегда создается на основе биохимии собственных клеток, т. е. оно является неотъемлемой частью организма.

Физиологические адаптации пиявок, связанные с химизмом, основаны на применении сложной смеси белков-ферментов, воздействующих на кровь млекопитающих. Ферменты вырабатываются слюнными железами и, как известно, в момент укуса поступают в кровь жертвы. Но они не должны работать в теле хозяина. Значительная доля слюнного секрета поступает в пищеварительный тракт червя, где ферменты обрабатывают запасы крови.

Рассмотрим эти ферменты в порядке их подключения к процессу потребления пищи медицинской пиявкой. Первыми начинают работать белки, способствующие разрыву капилляров в области укуса и ускоряющие кровоток в этой зоне. Это помогает червю быстро заглатывать большие порции крови и разжижать ее плотные сгустки.

Питаться густой кровью, в которой имеются тромбы, крайне неудобно. Для этого надо иметь мощный кишечник, а пиявка экономит резервы своего пищеварительного тракта, иначе он не сможет накапливать достаточно крови. Вдобавок быстро глотать густую кровь весьма затруднительно. Вот почему пиявке понадобились такие вещества.

Затем в работу вступают ферменты, сдерживающие всасывание крови и растворяющие в ней уже имеющиеся тромбы. Эти компоненты слюнного секрета способствуют нормальному перевариванию крови в кишечнике червя. Наконец, последними подключаются вещества, консервирующие кровяные запасы. Данные вещества сохраняют кровь свежей, противостоят ее высыханию и подавляют деятельность микробов, попавших в кишечник пиявки.

Экстракт секрета слюнных желез в целом полностью проанализирован на сегодняшний день. Из этой смеси полезных веществ выделены все важнейшие функциональные белки. К ним относятся гирудин, дестабилаза, оргелаза, антистазин, декорзин, калин, эглин и некоторые другие соединения того же порядка. Познакомимся с некоторыми из перечисленных ферментов.

В составе экстракта не все вещества надлежит считать равноценными. Первостепенными компонентами смеси являются гирудин, дестабилаза и оргелаза. Второстепенными условно можно считать антистазин, декорзин, калин и прочие компоненты.

Главной задачей этих веществ является обеззараживание крови и слюны, улучшение некоторых свойств крови, воздействие на кровоток и стенки сосудов. Поэтому комплекс второстепенных компонентов обладает широким спектром действия на организм человека.

Группы ферментов принято классифицировать по характеру их физиологического воздействия на: 1) влияющие на иммунитет и патогенную микрофлору, а значит, помогающие пиявке обеззараживать свою пищу и выдерживать натиск микробов; 2) влияющие на стенки сосудов, а значит, способствующие успешному их прогрызанию; 3) оказывающие влияние на движение крови и лимфы, поскольку таким образом пиявка получает возможность потреблять больше крови, не прилагая особых усилий.

Ферменты первой группы оказывают противовоспалительное, бактериостатическое и иммуностимулирующее действие. Ферменты второй группы оказывают антиатеросклеротическое и противоишемическое действие. Ферменты третьей группы оказывают преимущественно гипотензивное и лимфогонное действие. Следует заметить, что без большинства этих ферментов пиявка отлично бы обошлась. Скорее всего, эволюция закрепила в организме червя механизмы выработки данных веществ в интересах сохранения самой системы паразит - хозяин.

Теперь же познакомимся с двумя очень важными ферментами - гирудином и дестабилазой. Гирудин, пространственную модель которого ученые уже сумели построить на компьютере по результатам химических тестов и физических методов рентгеноструктурного и рентгеноспект-рального анализа, представляет собой вещество белковой природы. С химической точки зрения это полипептид, т. е. цепочка аминокислотных остатков, с молекулярной массой 16 000. Важнейшими аминокислотами в составе данного вещества являются глутамин, аспарагин, лизин, цистин, глицин, серин и некоторые другие.

Если сравнить гирудин с прочими белками нашего организма, то окажется, что молекулы фермента далеко не самые большие. Гемоглобин превосходит пиявочный фермент по массе в 4 раза. Но молекулы гирудина нельзя назвать и маленькими: они приближенно равны массе прочих ферментов (12- 17 тыс.) и даже превосходят отдельные белки. Скажем, секрет поджелудочной железы инсулин в 2,8 раза легче гирудина по своей молекулярной массе.

При слабом содействии некоторых других компонентов пиявочного экстракта гирудин ингибирует, т. е. подавляет, активность тромбина, блокируя таким образом превращения белков кровяной плазмы. Маленький секрет фермента заключается в том, что это вещество связывает тромбин. В результате образуется соединение, слабо распадающееся в воде на ионы. Тромбин в связанном виде не проявляет протеолитические свойства, поэтому не происходит превращения фибриногена в фибрин.

За счет своего прицельного действия главный фермент медицинской пиявки получает возможность ощутимо влиять на свертываемость крови на всех этапах процесса коагуляции, где только выступает в качестве ведущего коагулянта тромбин. А это означает, что дальнейший рост тромба, находящегося практически в любой стадии его формирования, может быть полностью остановлен гирудином. Попутно пиявочный фермент блокирует ряд других реакций, в т. ч. тормозит образование собственно тромбина и тромбокиназы, замедляет процесс агрегации тромбоцитов. При местном применении гирудина было отмечено противовоспалительное действие препарата.

Лабораторные опыты показали, что гирудин проявляет себя как антикоагулянт быстрого действия при введении в организм и при поступлении в пробирочные образцы. Как и любой фермент, гирудин не преобразуется в организме в новые вещества, а потому выводится почками в неизмененном виде.

Биохимические опыты с гирудином проводятся благодаря использованию очищенного препарата из экстракта слюны пиявок с тем же названием - Hirudinum. Данное вещество является натуральным, чистым от примесей активным белком, представляющим собой растворимый в воде порошок. Этот же препарат используется в медицинских целях как лекарственное и профилактическое средство.

Фармакологические свойства данного препарата уникальны. Гирудин не может использоваться в качестве орального средства, потому что он легко разлагается пищеварительными соками желудка и кишечника, содержащими мощные ферменты-протеолитики. За счет ускоренного физиологического действия гирудина, введенного внутривенно, его антикоагулирующий эффект проявляется практически мгновенно. Длительность эффекта оценивается в 15-45 мин в зависимости от величины дозы. Скорость перехода вещества в ткани определяется по уменьшению его концентрации в крови. Этот процесс занимает немного времени.

Максимальный эффект при другом способе введения возникает не сразу, а спустя некоторое время, однако и длительность воздействия препарата в таком случае несравнимо больше. Наиболее длительным по воздействию оказывается эффект от подкожного введения гирудина. Влияние вещества на биохимические процессы тканей достигает максимума спустя два часа после введения средства и длится до 8-10 ч., постепенно убывая по интенсивности. При внутримышечном введении гирудин становится предельно активным по прошествии часа, антикоагулирующий эффект длится 4-5 ч.

Выше указывалось, что в слюне червя найдены некоторые другие белки, также мешающие крови сворачиваться. Однако они малочисленны и недостаточно активны, а потому являются, видимо, просто вспомогательными, тогда как основную работу выполняет гирудин. Биологическое значение данных антикоагулянтов в настоящее время еще нe до конца выяснено, также идет изучение их химических и фармакологических свойств.

Специалисты по молекулярной биологии и биоорганической химии утверждают, что предотвратить рост тромба сравнительно несложно. Гораздо сложнее вызвать его разжижение, особенно если этот тромб застарелый. Ферменты крови человека не всегда оказываются способными растворить уже сформировавшиеся белковые комочки.

Заменителем протеолитических препаратов нередко служит плазминоген. Это вещество содержится и в плазме человеческой крови, т. к. оно предшествует плазмину и ряду биохимических превращений ферментов-тромболитиков. Иначе говоря, плазминоген есть предшественник плазмина, что, к слову, указано в названии данного соединения (греч. "генезис" - происхождение, порождение). Введение плазминогена в организм человека способствует более интенсивной выработке в крови плазмина.

Медицинская пиявка действует более деликатно. Она не пользуется протеолитическими ферментами и даже содержит в своей слюне их ингибиторы: т. е. червь не только разрушает тромбы без использования протеолитиков, во и подавляет эти вещества. Подобная стратегия пищевого поведения вида, кажущаяся на первый взгляд странной, в действительности оправдана. Пиявке невыгодно смешение антикоагулянтов и растворителей фибрина.

Вместо последних в слюне червя содержится вещество с более мягким и тонким действием. Это вещество получило название дестабилазы. Фермент нельзя причислить к разрушителям, он в полном смысле слова представляет собой фактор, дестабилизирующий фибрин. Полимерный фибрин, образующий прочные волокна из каркаса уже сформировавшегося тромба, принято называть стабилизированным. Обычные разрушители белков, такие, как протеолитики, достигают деполимеризации и разложения белковой молекулы посредством расщепления пептидных связей между ее звеньями.

Дестабилаза аккуратно влияет на совершенно другие, ковалентные связи фибрина. Они получили обозначение изопептидных, что означает существующие наравне (равноценные) с пептидными. Изопептидные связи скрепляют боковые цепи глутамина и лизина.

Ранее уже упоминалось, что это химическое объединение было создано благодаря работе плазменного фермента трансглутаминазы. Трансглутаминазу и дестабилазу с полным основанием можно посчитать антиподами. Вместо того чтобы сокрушать сцементированный белок, дестабилаза лишает его стабильности, словно перерезая некоторые участки молекулы.

В итоге пептидная цепь распадается, и белок растворяется в кровяной плазме. При этом присутствие фермента в крови никак не сказывается на нестабилизированном фибрине, а также фибриногене. Система свертывания не страдает, ее работа по-прежнему остается слаженной. Как только слюна пиявки перестает работать, организм вновь готов залечивать свои раны. Нежное действие фермента не травмирует кровеносные сосуды и способствует их скорейшему заживлению, без разрастания опасных тромбов.

Другим неоспоримым достоинством дестабилазы справедливо считается та низкая скорость, с которой она воздействует на фибрин. За счет медленного действия тромбы полностью рассасываются лишь тогда, когда защищавшиеся ими ткани успели регенерировать и полностью восстановили свои функции. Следовательно, пиявка оказывается более полезной, чем традиционные лекарства.

Лечение обычными химическими тромболитиками дает не самые лучшие результаты и причиняет массу проблем как врачам, так и пациентам. Во-первых, традиционные протеолитики разрушают фибрин и оставляют на какое-то время незащищенными кровеносные сосуды. Во-вторых, в 30% случаев такого лечения тромбы начинают формироваться вторично, поскольку организм всеми силами пытается заживить пораженные стенки сосудов.

Известны ученым и прочие достоинства дестабилазы, не относящиеся к разложению фибрина. Одним из них является способность фермента подавлять агрегацию кровяных пластинок. Это было доказано отечественными биохимиками в опытах с препаратами очищенной дестабилазы, проведенными на лабораторных животных в первой половине 1990-х гг. В последнее время ученые приближаются к разгадке механизма данного явления.

Другое ценное свойство фермента сводится к его способности расщеплять исключительно изопептидные связи, причем у любых белков. Это весьма редкая способность, прежде в распоряжении медиков и биологов не было подобного средства. По мнению ряда врачей, дестабилазу можно успешно использовать при лечении катаракты. Задолго до открытия удивительного фермента было замечено позитивное влияние гирудотерапии на органы зрения человека. При лечении пиявками некоторых глазных болезней удавалось ощутимо замедлить развитие катаракты.

Сегодня ученые объясняют данное явление на основе биохимического механизма заболевания. Оно выражается в помутнении хрусталика глаза. Помутнение же, в свою очередь, вызвано перестройкой молекул белка бета-кристаллина, слагающего тело хрусталика. Эти перестройки заключаются в объединении молекул бета-кристаллина с возникновением между последними изопептидных связей. Дестабилаза, не разрушая собственно белок хрусталика, уничтожает его изопептидные связи, разрывает сцепленные молекулы и восстанавливает их прежнюю структуру.

 

Пиявки управляют матриксом

Матриксом называется основная субстанция (вещество) соединительной ткани, окружающей кровеносные сосуды и внутренние органы. Она выполняет ряд функций, которые можно классифицировать как защитные. Прежде всего именно матрикс регулирует поступление питательных веществ и кислорода из капилляров и прочих сосудов в клетки других органов. Транспортная функция сердечно-сосудистой системы является первостепенной, поэтому выполняемая матриксом работа по потреблению веществ из кровотока и выведению в него новых - метаболитов - представляет важнейшую задачу соединительной ткани, окружающей капилляры.

В норме кровь богата функционально насыщенными белками вроде альбумина и глобулинов. Таких белков так много, что это вызывает диффузию тканевой жидкости, которая перетекает в сосуды. Так происходит обмен через стенки капилляров. Разница давления жидкости в венозных и артериальных сосудах малого калибра создает в них фильтрационное давление, регулирующее процесс перетекания тканевой жидкости в капилляры и обратно.

Патологическое изменение проницаемости капилляров при шоке в результате травматических или воспалительных поражений сосудистой системы влечет за собой нарушения обменных процессов в тканях, в т. ч. и выражающиеся в появлении отечности, когда жидкость активно переходит из капилляров в ткани и скапливается в них.

Далее задачей защитного слоя стоит блокировка продвижения попадающих в кровоток чужеродных биологических агентов (посторонних белков, вирусных частиц, бактерий), способных вызвать аллергическую реакцию, воспаление или инфекцию. В противном случае посторонние белковые молекулы и микробы, не уничтоженные своевременно в кровотоке, свободно перемещались бы по организму, травмируя клеточные стенки и вызывая раздражение и интоксикацию.

Благодаря матриксу микробы и прочие агенты остаются в кровяном русле, где обезвреживаются иммунной системой человека: постепенно подъедаются огромными клетками-защитниками (лейкоцитами из группы фагоцитов) или связываются специфическими белками, которые называются антителами. Защитная система кровотока поддерживается биологической активностью особых глобулинов, насыщающих кровь. Данные вещества получили наименование иммуноглобулинов.

Как показали последние исследования, воздействие ферментов пиявочной слюны распространяется гораздо дальше эндотелия сосудов. Эти вещества проникают глубоко в слой волокон соединительной ткани, выстилающий снаружи капилляры, венулы и артериолы. Самым значимым из таких ферментов следует считать открытую сравнительно недавно оргелазу, разжижающую матрикс.

Оргелаза повышает проницаемость стенок мелких кровеносных сосудов, в первую очередь капилляров. Наличие в слюне пиявки вещества с такими свойствами объясняется весьма просто. Это очередное "хитрое изобретение" эволюции. Паразиты пытались поддерживать высокую эффективность своего слюнного секрета за счет влияния не только и не столько на локальную область сосудистой системы, но и на дальние прилегающие разветвления капилляров, венул и артериол.

Это позволяло бы червям с успехом регулировать питательные качества крови. Однако чем дальше продвигались слюнные ферменты, тем больше их задерживалось тканями организма. Вот почему паразиту понадобился принципиально новый компонент слюны, который бы менял свойства прилегающих к кровотоку тканей и тканей, слагающих сосуды.

Фермент наносит удар по клеткам человеческого организма, ответственным за обмен веществ между кровью и прочими тканями. В итоге человеческая кровь уже в нашем собственном теле подготавливается пиявкой к последующему перевариванию. Оргелаза способствует активному распространению пиявочных антикоагулянтов в кровотоке, превращая наше тело в большую консервную банку с колоссальными запасами высококачественной крови.

Этот мощнейший удар фермента, если умело дозировать поступление последнего в организм приемами гирудотерапии, отнюдь не окажется сокрушительным. Нормированное (лечебное) действие фермента обусловливает стабилизацию переноса веществ, открывает доступ к клеткам биологически активных соединений, интенсифицирует микроциркуляцию крови в области пораженного органа. Последнее осуществляет трояко.

Во-первых, как было сказано, оргелаза вкупе с остальными пиявочными ферментами разжижает кровь и способствует повышению скорости ее протекания по капиллярам. Во-вторых, данное вещество активизирует большое число закрытых капилляров. Закрытые капилляры - удивительное явление в физиологии человека. Организм большую часть времени не использует полностью своих возможностей. Этот резерв эксплуатируется исключительно в случае больших нагрузок. В противном случае произошло бы изнашивание организма. Кровь может течь по капиллярам с гораздо большей скоростью, чем обычно.

Циркуляция жидкой ткани значительно усиливается при занятиях спортом или физическим трудом, когда приходится быстро снабжать мышцы кислородом и питательными веществами, одновременно очищая организм от интенсивно накапливающихся метаболитов (продуктов обмена). Естественно, при наличии нагрузок возникает необходимость увеличить пропускную способность сосудистой системы.

Отчасти это достигается путем временного увеличения калибра капилляров, венул и артериол. Но главным образом организм увеличивает пропускную способность системы за счет открытия прекапиллярных сфинктеров закрытых, "запасных" капилляров. В покое большая часть наших сосудов всегда закрыта, это резервные пути для перекачки крови. Постоянно работают лишь 10% капилляров от общего числа.

Как видим, резерв организма колоссален. Часто при некоторых заболеваниях, особенно когда отмечены застойные явления в кровеносной системе, требуется увеличить скорость кровотока. Для этого и нужны резервные закрытые капилляры. Оргелаза способствует их открытию. Наконец, недавно был открыт третий путь интенсификации кровообращения этим ферментом: очень высока вероятность того, что оргелаза вызывает рост новых мелких сосудов, т. е. пропускная способность кровеносной системы увеличивается еще и за счет появления новых протоков - капилляров, хотя пока многие специалисты очень осторожно относятся к этому факту.

Таким образом, физиологические последствия внедрения оргелазы в матрикс соединительной ткани сводятся к исчезновению отечности, восстановлению баланса жидкостей, снятию воспаления, нормализации микроциркуляции крови в органах, стабилизации уровня концентрации белковой фракции плазмы, частичному структурному обновлению тканей, обеспечивающих транспорт веществ, и пр.

По рассмотрении спектра действия ферментов, вырабатываемых организмом медицинской пиявки, нетрудно заключить, что врач назначает лечение методом гирудотерапии не по малейшему поводу, как это было прежде. Главными показаниями к применению пиявок являются тромбозы, тромбофлебиты и подобные им заболевания, связанные с повышенной свертываемостью крови и массовым образованием в кровотоке тромбов.

Также пиявки помогают при таких воспалительных процессах, когда серьезно поражаются капилляры и мелкие кровеносные сосуды, в результате чего нарушается микроциркуляция крови в органах и тканях. Наконец, повышая текучесть крови и улучшая структуру стенок капилляров, вещества из пиявочной слюны способствуют устранению застойных явлений в кровеносной системе. Поэтому гирудотерапия полезна при тех заболеваниях, когда в качестве ведущих факторов патогенеза выступают тромбообразование, травмирование сосудов, воспаление и застой крови и лимфы.

Не каждый раз врач-гирудотерапевт посоветует своему клиенту ставить пиявки, поскольку подчас с равным успехом можно воспользоваться аптечными лекарствами, приготовленными на основе составных элементов ферментной смеси из пиявочной слюны.

Первым фармакологическим препаратом, приготовленным из экстракта слюны пиявки, был гирудин. Его массовое получение в форме сырца из головных концов обыкновенной медицинской пиявки было налажено в 1920-х гг., а с начала 1960-х гг. белок стали получать в очищенном виде. Ныне он применяется в качестве заменителя гепарина. В последние годы появилось немало новых, чрезвычайно эффективных средств, произведенных сходным путем.

Прежде всего это гирулоги и гиругены. Эти соединения обладают основными свойствами настоящего гирудина, однако химически представляют собой лишь небольшие синтетические отрезки молекулы данного фермента. Их производство было освоено в нашей стране и некоторых других государствах по причине повышения спроса на данный антикоагулянт. Традиционное получение гирудина-сырца из пиявочного экстракта недостаточно удовлетворяло потребность в нем медицины.

Генно-инженерный гирудин, который не только действует как антикоагулянт, но и помогает при болезнях сердца, слишком дорог. Необычайно полезный, он сегодня доступен немногим покупателям. Дешевым пока может быть лишь материал, искусственно синтезируемый "в пробирке" в массовых количествах. Таким примитивным материалом являются названные отрезки молекулы настоящего гирудина, производить которые сравнительно легко.

Около 15 лет назад на биологическом факультете МГУ начались разработки нового препарата из экстракта слюнных желез пиявок. На текущий момент эта работа в целом завершена. Препарат не так давно был допущен к клиническому использованию после прохождения всех соответствующих испытаний, так что вскоре он войдет в медицинскую практику.

Это средство представляет собой комплекс различных активных веществ и обладает тромболитическим, противотромботическим и противовоспалительным действием. "Пиявит" рассчитан на лечение поверхностных вен, но может, видимо, применяться и в ряде других случаев. Возможности его применения находятся на стадии изучения. Кроме того, за последние годы были проведены незавершенные разработки еще нескольких перспективных средств, которые, как ожидается, поступят в продажу в ближайшем будущем.


Противопоказания в применении пиявок

 

 



Поделиться:


Последнее изменение этой страницы: 2020-12-19; просмотров: 109; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.86.134 (0.055 с.)