Метрологические характеристики измерительных средств 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Метрологические характеристики измерительных средств



Все средства измерений, независимо от их конкретного исполнения, обладают рядом общих свойств, необходимых для выполнения их функционального назначения. Технические характеристики, описывающие эти свойства и оказывающие влияние на результаты и на погрешности измерений, называются метрологическими характеристиками.

Комплекс нормируемых метрологических характеристик устанавливается таким образом, чтобы с их помощью можно было оценить погрешность измерений, осуществляемых в известных рабочих условиях эксплуатации посредством отдельных средств измерений или совокупности средств измерений, например автоматических измерительных систем.

Одной из основных метрологических характеристик измерительных преобразователей является статическая характеристика преобразования, называемая функцией преобразования, или градуировочной характеристикой. Она устанавливает зависимость

y=f(x)

где у – информативный параметр выходного сигнала измерительного преобразователя; х – информативный параметр входного сигнала.

Статическая характеристика нормируется путем задания в форме уравнения, графика или таблицы. Понятие статической характеристики применимо к измерительным приборам, если под независимой переменной х понимать значение измеряемой величины или информативного параметра входного сигнала, а под зависимой величиной у – показание прибора.

Если статическая характеристика преобразования линейна, т.е.

у = Кх,

то коэффициент (К) называется чувствительностью измерительного прибора (преобразователя). В противном случае под чувствительностью следует понимать производную от статической характеристики.

Важной характеристикой шкальных измерительных приборов является цена деления, т.е. то изменение измеряемой величины, которому соответствует перемещение указателя на одно деление шкалы. Если чувствительность постоянна в каждой точке диапазона измерения, то шкала называется равномерной. При неравномерной шкале нормируется наименьшая цена деления шкалы измерительных приборов.

У цифровых приборов шкалы в явном виде нет, и на них вместо цены деления указывается цена единицы младшего разряда числа в показании прибора.

Важнейшей метрологической характеристикой средств измерений является погрешность

Терминология и требования к точности методов и результатов измерений регламентированы в комплексе из шести государственных стандартов РФ — ГОСТ Р ИСО 5725 под общим заголовком «Точность (правильность и прецизионность) методов и результатов измерений», введенных в действие в 2002 году (далее Стандарт 5725). Стандарты ГОСТ Р ИСО являются переводом с английского языка международных стандартов ИСО 5725:1994.

Слово «метод» в Стандарте 5725 охватывает и собственно метод измерений и методику их выполнения и должно трактоваться в том или ином смысле (или в обоих смыслах) в зависимости от контекста. Поскольку Стандарт 5725 указывает, каким образом можно обеспечить необходимую точность измерения, в принципе становится возможным сравнивать по точности различные методы измерений, методики их выполнения, организации (лаборатории) и персонал (операторов), осуществляющих измерения.

Появление Стандарта 5725 вызвано возрастанием роли рыночных стимулов к качественному выполнению измерений и является ответом на такие острые вопросы, как: что такое качество измерений и как его измерять; можно ли определить, насколько при измерении той или иной величины один метод (методика) совершеннее другого или одна испытательная организация лучше другой; в какой степени следует доверять измеренным и зафиксированным значениям; и т.п.

В отечественной метрологии погрешность результатов измерений, как правило, определяется сравнением результата измерений с истинным или действительным значением измеряемой величины.

Истинное значение — значение, которое идеальным образом характеризует в качественном и количественном отношении соответствующую величину.

Действительное значение — значение величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него.

В условиях отсутствия необходимых эталонов, обеспечивающих воспроизведение, хранение и передачу соответствующих значений величин, необходимых для определения погрешности (точности) результатов измерений, в отечественной и международной практике за действительное значение зачастую принимают общее среднее значение (математическое ожидание) заданной совокупности результатов измерений, выражаемое в отдельных случаях в условных единицах. Эта ситуация и отражена в термине «принятое опорное значение» и рекомендуется для использования в отечественной практике.

Понятие принятого опорного значения является более универсальным, чем понятие «действительное значение». Оно определяется не только как условно истинное значение измеряемой величины через теоретические константы и (или) эталоны, но и (в их отсутствии) как ее среднее значение по большому числу предварительно выполненных измерений в представительном множестве лабораторий. Таким образом, принятым опорным значением может быть как эталонное, так и среднее значение измеряемой характеристики.

Точность — степень близости результата измерений к принятому опорному значению.

В рамках обеспечения единства измерений вводится термин «правильность» — степень близости к принятому опорному значению среднего значения серии результатов измерений. Показателем правильности обычно является значение систематической погрешности.

Прежде термин «точность» распространялся лишь на одну составляющую, именуемую теперь правильностью. Однако стало очевидным, что он выражает суммарное отклонение результата от эталонного (опорного) значения, вызванное как случайными, так и систематическими причинами.

Прецизионность — степень близости друг к другу независимых результатов измерений, полученных в конкретных регламентированных условиях. Независимые результаты измерений (или испытаний) — результаты, полученные способом, на который не оказывает влияние никакой предшествующий результат, полученный при испытаниях того же самого или подобного объекта.

Необходимость рассмотрения «прецизионности» возникает из-за того, что измерения, выполняемые на предположительно идентичных материалах при предположительно идентичных обстоятельствах, не дают, как правило, идентичных результатов. Это объясняется неизбежными случайными погрешностями, присущими каждой измерительной процедуре, а факторы, оказывающие влияние на результат измерения, не поддаются полному контролю.

Прецизионность зависит только от случайных погрешностей и не имеет отношения к истинному или установленному значению измеряемой величины. Меру прецизионности обычно выражают в терминах неточности и вычисляют как стандартное отклонение результатов измерений. Меньшая прецизионность соответствует большему стандартному отклонению. Количественные значения мер прецизионности существенно зависят от регламентированных условий. Крайними случаями таких условий являются условия повторяемости и условия воспроизводимости.

Повторяемость — прецизионность в условиях повторяемости. В отечественных НД наряду с термином «повторяемость» используют термин «сходимость».

Условия повторяемости (сходимости) — условия, при которых независимые результаты измерений (или испытаний) получаются одним и тем же методом на идентичных объектах испытаний, в одной и той же лаборатории, одним и тем же оператором, с использованием одного и того же оборудования, в пределах короткого промежутка времени. В качестве мер повторяемости (а также воспроизводимости) в Стандарте 5725 используются стандартные отклонения.

Стандартное (среднеквадратическое) отклонение повторяемости (сходимости) — это стандартное (среднеквадратическое) отклонение результатов измерений (или испытаний), полученных в условиях повторяемости (сходимости). Эта норма является мерой рассеяния результатов измерений в условиях повторяемости.

В Стандарте 5725 для крайних условий измерений введены показатели свойств повторяемости и воспроизводимости пределов.

Предел повторяемости (сходимости) — значение, которое с доверительной вероятностью 95% не превышается абсолютной величиной разности между результатами двух измерений (или испытаний), полученными в условиях повторяемости (сходимости).

Воспроизводимость — прецизионность в условиях воспроизводимости.

Условия воспроизводимости — это условия, при которых результаты измерений (или испытаний) получают одним и тем же методом, на идентичных объектах испытаний, в разных лабораториях, разными операторами, с использованием различного оборудования.

Стандартные (среднеквадратические) отклонения воспроизводимости — стандартные (среднеквадратические) отклонения результатов измерений (испытаний), полученных в условиях воспроизводимости. Эта норма является мерой рассеяния результатов измерений (или испытаний) в условиях воспроизводимости.

Предел воспроизводимости — значение, которое с доверительной вероятностью 95% не превышается абсолютной величиной разности между результатами измерений (или испытаний), полученными в условиях воспроизводимости.

Для практики измерений важен термин «выброс». Выброс — элемент совокупности значений, который несовместим с остальными элементами данной совокупности.

 



Поделиться:


Последнее изменение этой страницы: 2020-11-11; просмотров: 91; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.21.34.0 (0.008 с.)