В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп:

Поиск

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4.

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе?

B10 № 320345.

В чемпионате мира участвуют 20 команд. С помощью жребия их нужно разделить на пять групп по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп:

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5.

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда Китая окажется в четвёртой группе?

 

B10 № 320347.

В чемпионате мира участвуют 20 команд. С помощью жребия их нужно разделить на пять групп по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп:

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5.

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда Китая окажется в первой группе?

B10 № 320349.

В чемпионате мира учавствуют 10 команд. С помощью жребия их нужно разделить на две группы по пять команд в каждой. В ящике вперемешку лежат карточки с номерами групп:

1, 1, 1, 1, 1, 2, 2, 2, 2, 2.

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда Бразилии окажется в первой группе?

 

B10 № 320353.

В чемпионате мира учавствуют 20 команд. С помощью жребия их нужно разделить на пять групп по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп:

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5.

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда Китая окажется в пятой группе?

 

B10 № 320178.

На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет чётной?

 

B10 № 320841.

На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет нечётной?

 

B10 № 320843.

На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет меньше 4?

 

B10 № 320845.

На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет 4?

 

B10 № 320847.

На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет 3?

 

B10 № 320179. Какова вероятность того, что случайно выбранное натуральное число от 10 до 19 делится на три?

 

B10 № 320855.

Какова вероятность того, что случайно выбранное натуральное число от 58 до 82 делится на 6?

B10 № 320857.

Какова вероятность того, что случайно выбранное натуральное число от 40 до 54 делится на 5?

 

B10 № 320859.

Какова вероятность того, что случайно выбранное натуральное число от 41 до 56 делится на 2?

B10 № 320181. В группе туристов 5 человек. С помощью жребия они выбирают двух человек, которые должны идти в село за продуктами. Турист А. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что А. пойдёт в магазин?

 

B10 № 321005.

В группе туристов 6 человек. С помощью жребия они выбирают трёх человек, которые должны идти в село за продуктами. Турист К. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что К. пойдёт в магазин?

B10 № 321007.

В группе туристов 8 человек. С помощью жребия они выбирают четырёх человек, которые должны идти в село за продуктами. Турист Г. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что Г. пойдёт в магазин?

 

B10 № 321009.

В группе туристов 10 человек. С помощью жребия они выбирают четырёх человек, которые должны идти в село за продуктами. Турист В. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что В. пойдёт в магазин?

 

B10 № 321011.

В группе туристов 8 человек. С помощью жребия они выбирают двух человек, которые должны идти в село за продуктами. Турист Б. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что Б. пойдёт в магазин?

B10 № 320183. Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Физик» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Физик» выиграет жребий ровно два раза.

 

B10 № 321013.

Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Химик» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Химик» выиграет жребий ровно два раза.

 

B10 № 321015.

Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Труд» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Труд» выиграет жребий ровно один раз.

 

B10 № 321017.

Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Сапфир» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Сапфир» выиграет жребий ровно один раз.

 

B10 № 321019.

Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Сапфир» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Сапфир» проиграет жребий ровно два раза.

 

B10 № 321023.

Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Труд» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Труд» выиграет жребий ровно два раза.

B10 № 320184.

Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «А = сумма очков равна 5»?

B10 № 321041.

Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию

А = {сумма очков равна 4}?

 

B10 № 321043.

Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию

А = {сумма очков равна 10}?

 

B10 № 321045

Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию

А = {сумма очков равна 9}?

 

B10 № 321047.

Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию

А = {сумма очков равна 2}?

 

B10 № 320185. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что в первый раз выпадает орёл, а во второй — решка.

 

B10 № 321051.

В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что наступит исход РРР (все три раза выпадает решка).

B10 № 321053.

В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что наступит исход ОРР (в первый раз выпадает орёл, во второй и третий — решка).

B10 № 321055.

В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что наступит исход РОР (в первый и третий разы выпадает решка, во второй — орёл).

B10 № 321057.

В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что наступит исход ООР (в первый и второй разы выпадает орёл, в третий — решка).

B10 № 321059.

В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что наступит исход ООО (все три раза выпадает орёл).

B10 № 321061.

В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что наступит исход РР (оба раза выпадет решка).



Поделиться:


Последнее изменение этой страницы: 2020-10-24; просмотров: 361; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.41 (0.006 с.)