Особенности архитектуры MIPS компании MIPS technology 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Особенности архитектуры MIPS компании MIPS technology



MIPS (англ. Microprocessor without Interlocked Pipeline Stages - «микропроцессор без блокировок в конвейере») - семейство RISC-микропроцессоров, разработаное компанией MIPS Technologies. Архитектура MIPS использовалась в старых компьютерах SGI, а также во встроенных системах и в игровых консолях Nintendo 64, Sony PlayStation, Sony PlayStation 2 и Sony PSP.

Первые процессоры MIPS были 32-битными, позже была разработана 64-битная архитектура.

Основная идея - сильно упростив внутреннее устройство процессора и используя очень длинный (по тем временам) конвейер, можно получить процессор, не умеющий выполнять сравнительно сложные инструкции, зато работающий на очень высоких тактовых частотах, позволяющих скомпенсировать потери производительности на эмуляцию этих сложных инструкций. Изначально предполагалось, что MIPS-процессоры не будут аппаратно поддерживать даже операции умножения и деления, благодаря чему можно было обойтись без сложных в реализации блокировок конвейера.

В настоящий момент процессоры архитектуры MIPS широко используются во встраиваемых устройствах с критичной производительностью.

Семейство процессоров с архитектурой MIPS:

·   R1000 (не выпускался: лабораторный образец). У него отсутствовало умножение и деление (они выполнялись программно)

·         R2000

·         R3000

·         R4000

·         R5000

·         RM7000

·         RM9000

·         R8000

·         R10000 (последний созданный MIPS); его дальнейшие модификации с увеличенным кэшем <http://ru.wikipedia.org/wiki/%D0%9A%D1%8D%D1%88> и частотой:

o R12000

o R14000

o R16000

·   существуют различные модификации других фирм.

Архитектура MIPS была одной из первых RISC-архитектур, получившей признание со стороны промышленности. Она была анонсирована в 1986 году. Первоначально это была полностью 32-битовая архитектура, которая включала 32 регистра общего назначения, 16 регистров плавающей точки и специальную пару регистров для хранения результатов выполнения операций целочисленного умножения и деления. Размер команд составлял 32 бит, в ней поддерживался всего один метод адресации, и пользовательское адресное пространство также определялось 32 битами. Выполнение арифметических операций регламентировалось стандартом IEEE 754. В компьютерной промышленности широкую популярность приобрели 32-битовые процессоры R2000 и R3000, которые в течение достаточно длительного времени служили основой для построения рабочих станций и серверов компаний Silicon Graphics, Digital, Siemens Nixdorf и др. Процессоры R3000/R3010 работали на тактовой частоте 33 или 40 МГц и обеспечивали производительность на уровне 20 SPECint92 и 23 SPECfp92.

Затем на смену микропроцессорам семейства R3000 пришли новые 64-битовые микропроцессоры R4000 и R4400. (MIPS Technology была первой компанией выпустившей процессоры с 64-битовой архитектурой). Набор команд этих процессоров (спецификация MIPS II) был расширен командами загрузки и записи 64-разрядных чисел с плавающей точкой, командами вычисления квадратного корня с одинарной и двойной точностью, командами условных прерываний, а также атомарными операциями, необходимыми для поддержки мультипроцессорных конфигураций. В процессорах R4000 и R4400 реализованы 64-битовые шины данных и 64-битовые регистры. В этих процессорах применяется метод удвоения внутренней тактовой частоты.

Процессоры R2000 и R3000 имели стандартные пятиступенчатые конвейеры команд. В процессорах R4000 и R4400 применяются более длинные конвейеры (иногда их называют суперконвейерами). Количество ступеней в процессорах R4000 и R4400 увеличилось до восьми, что объясняется прежде всего увеличением тактовой частоты и необходимостью распределения логики для обеспечения заданной пропускной способности конвейера. Процессор R4000 может работать с тактовой частотой 50/100 МГц и обеспечивает уровень производительности в 58 SPECint92 и 61 SPECfp92. Процессор R4400 может работать на частоте 50/100 МГц, или 75/150 МГц, показывая уровень производительности 94 SPECint92 и 105 SPECfp92.

Внутренняя кэш-память процессора R4000 имеет емкость 16 Кбайт. Она разделена на 8-Кб кэш команд и 8-Кб кэш данных. С точки зрения реализации кэш-памяти процессор R4400 имеет более развитые возможности. Он выпускается в трех модификациях: PC (Primary Cashe) - имеет внутренние кэши команд и данных емкостью по 16 Кбайт. Процессор в такой конфигурации предназначен главным образом для дешевых моделей рабочих станций. SC (Secondary Cashe) содержит логику управления кэш-памятью второго уровня. MC (Multiprocessor Cashe) - использует специальные алгоритмы обеспечения когерентности и согласованного состояния памяти для многопроцессорных конфигураций.

В середине 1994 года компания MIPS анонсировала процессор R8000, который прежде всего был ориентирован на научные прикладные задачи с интенсивным использованием операций с плавающей точкой. Этот процессор построен на двух кристаллах (выпускается в виде многокристальной сборки) и представляет собой первую суперскалярную реализацию архитектуры MIPS. Теоретическая пиковая производительность процессора для тактовой частоты 75 МГц составляет 300 MFLOPs (до четырех команд и шести операций с плавающей точкой в каждом такте). Реализация большой кэш-памяти данных емкостью 16 Мбайт, высокой пропускной способности доступа к данным (до 1.2 Гбайт/с) в сочетании с высокой скоростью выполнения операций позволяет R8000 достигать 75% теоретической производительности даже при решении больших задач типа LINPACK с размерами матриц 1000x1000 элементов. Аппаратные средства поддержки когерентного состояния кэш-памяти вместе со средствами распараллеливания компиляторов обеспечивают возможность построения высокопроизводительных симметричных многопроцессорных систем. Например, процессоры R8000 используются в системе Power Challenge компании Silicon Graphics, которая вполне может сравниться по производительности с известными суперкомпьютерами Cray Y-MP, имеет на порядок меньшую стоимость и предъявляет значительно меньшие требования к подсистемам питания и охлаждения. В однопроцессорном исполнении эта система обеспечивает производительность на уровне 310 SPECfp92 и 265 MFLOPs на пакете LINPACK (1000x1000).

В 1994 году MIPS Technology объявила также о создании своего нового суперскалярного процессора R10000, начало массовых поставок которого ожидалось в конце 1995 года. По заявлениям представителей MIPS Technology R10000 обеспечивает пиковую производительность в 800 MIPS при работе с внутренней тактовой частотой 200 МГц за счет обеспечения выдачи для выполнения четырех команд в каждом такте синхронизации. При этом он обеспечивает обмен данными с кэш-памятью второго уровня со скоростью 3.2 Гбайт/с.

Чтобы обеспечить столь высокий уровень производительности в процессоре R10000 реализованы многие последние достижения в области технологии и архитектуры процессоров (Рис. 1).

 

Рис. 1. Блок-схема микропроцессора R10000


Иерархия памяти

При разработке процессора R10000 большое внимание было уделено эффективной реализации иерархии памяти. В нем обеспечиваются раннее обнаружение промахов кэш-памяти и параллельная перезагрузка строк с выполнением другой полезной работой. Реализованные на кристалле кэши поддерживают одновременную выборку команд, выполнение команд загрузки и записи данных в память, а также операций перезагрузки строк кэш-памяти. Заполнение строк кэш-памяти выполняется по принципу "запрошенное слово первым", что позволяет существенно сократить простои процессора из-за ожидания требуемой информации. Все кэши имеют двухканальную множественно-ассоциативную организацию с алгоритмом замещения LRU.



Поделиться:


Последнее изменение этой страницы: 2020-03-27; просмотров: 60; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.40.43 (0.008 с.)