Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Глава 1 электромеханические аналогии.↑ Стр 1 из 7Следующая ⇒ Содержание книги
Поиск на нашем сайте
СОДЕРЖАНИЕ
Введение...................................................................................................................3 ГЛАВА 1. Электромеханические аналогии §1. Электромагнитные и механические колебания...............................................5 §2. Решение уравнений, описывающих свободные колебания...........................15 §3. Решение физических задач................................................................................18 §4. Изучение волновых процессов.........................................................................25 ГЛАВА 2. Другие виды аналогий в школьном курсе физики §5.Использование аналогии при изучении транзистора.......................................32 §6. Изучение электрических цепей с использованием аналогии.........................35 §7. Аналогии при изучении постулатов Бора.........................................................45 ГЛАВА 3. Изучение аналогий на факультативах, кружках и спецкурсах. §8. Волчок и магнит..................................................................................................52 §9. Свет и глаз............................................................................................................62 Заключение.................................................................................................................70 Список литературы....................................................................................................71
Введение.
Аналогия - один из методов научного познания, который широко применяется при изучении физики. В основе аналогии лежит сравнение. Если обнаруживается, что два или более объектов имеют сходные признаки, то делается вывод и о сходстве некоторых других признаков. Вывод по аналогии может быть как истинным, так и ложным, поэтому он требует экспериментальной проверки. Значение аналогий при обучении связано с повышением научно-теоретического уровня изложения материала на уроках физики в средней школе, с формированием научного мировоззрения учащихся. В практике обучение аналогии используется в основном для пояснения уже введенных трудных понятий и закономерностей. Электромагнитные колебания и волны - темы школьного курса физики, усвоение которых традиционно вызывает большие затруднения у учащихся. Поэтому для облегчения изучения электромагнитных процессов используются электромеханические аналогии, поскольку колебания и волны различной природы подчиняются общим закономерностям. Аналогии между механическими и электрическими колебательными процессами с успехом используются в современных исследованиях и расчетах. При расчете сложных математических систем часто прибегают к электромеханической аналогии, моделируя механическую систему соответствующей электрической. Демонстрационный эксперимент при изучении переменного тока вскрывает лишь некоторые основные особенности процессов протекания тока по различным электрическим цепям. Здесь большое значение имеют аналогии, дающие возможность понять ряд явлений в цепях переменного тока, сущность которых трудно разъяснить в средней школе другими средствами. К таким вопросам в первую очередь относятся явления в цепях переменного тока с емкостью и индуктивностью, а также сдвиг фаз между током и напряжением. Использование метода аналогии при решении задач может идти в двух направлениях: 1) непосредственное применение этого метода; 2) отыскание физической системы, которая аналогична данной в условии задачи. В данной работе будут рассмотрены следующие аналогии, изучаемые в курсе физики средней школы: электромагнитные и механические колебания; решение уравнений, описывающих колебания в пружинном и математическом маятниках; решение физических задач; изучение волновых процессов; изучение электрических цепей с использованием аналогии; использование аналогии при изучении транзистора; аналогии при изучении постулатов Бора; волчок и магнит; свет и глаз. Таким образом аналогии позволяют учащимся более глубоко понять известные физические явления, понятия и процессы.
ГЛАВА 1 ЭЛЕКТРОМЕХАНИЧЕСКИЕ АНАЛОГИИ. Решение физических задач.
Рассмотрим несколько задач, решение которых методом аналогии возможно на уроках и факультативных занятиях в 11 классах (после изучения раздела "Электрические колебания) и при повторении материала. Задача1. Изобразите механические системы, аналогичные электрическим цепям, схематически изображенными на рис.1,а,б
Решение. Аналогичная механическая система соответствующая рис.1,а,б должна содержать тело массой m и две пружины с разными жестокостями и а) Общая емкость системы конденсаторов (рис.1,а) равна
Используя аналогию механических и электрических величин, найдем что общая жесткость пружин искомой механической системы находится из соотношения
Это соответствует последовательному соединению двух пружин. Учитывая, что один конденсатор заряжен, искомую механическую систему можно представить в виде одной сжатой пружины жесткость и одной недеформированной пружины жесткостью (рис.2,а). б) Аналогично рассмотрим вторую схему. Общая емкость системы конденсаторов (рис.1,б) равна
Используя аналогию механических и электрических величин, найдем что общая жесткость пружин искомой механической системы находится из соотношения
Это соответствует параллельному соединению двух пружин(рис.2,б). рис.2. Задача2 На рис.3,а,б изображены колебательные контуры. Придумайте механические аналоги им. рис.3,а О т в е т. Аналогичная механическая система соответствующая рис.3,а,б должна содержать два тела массами и , и пружину жесткостью k. а) Общая индуктивность системы при последовательном соединении катушек равна Используя аналогию механических и электрических величин найдем, что общая масса А это соответствует рис.4,а Рис. 4.а б) Аналогично рассматриваем вторую схему. Общая индуктивность параллельно соединенных катушек находится из соотношения Используя аналогию механических и электрических величин, найдем что общая масса катушек равна Это соответствует рис.4,б
Задача3. Придумайте механическую систему, которая была бы аналогична электрической цепи, состоящей из конденсатора емкостью С и резистора сопротивлением R (рис. 5). Первоначальный заряд конденсатора равен qм. Ключ К замыкается в некоторый момент времени принимаемый за начальный. Рис. 5. О т в е т. Электрическую цепь, состоящую из емкости и сопротивления, можно представить как предельный случай электрического колебательного контура, в котором индуктивность настолько мала, что ею можно пренебречь. Поэтому аналогичная механическая система будет представлять собой прикрепленное к пружине (жесткость К) тело с очень малой массой, но с значительным объемом, находящееся в поле действия силы вязкого трения с коэффициентом ß. Задача4. Придумайте механическую динамическую аналогию электрической цепи, представленной на рис. 6. В начальный момент катушка индуктивностью L и резистор сопротивлением R отключены от источника постоянного тока с ЭДС . Рис. 6. О т в е т. Аналогичная механическая система состоит из тела, находящегося в поле тяжести Земли и расположенного внутри жидкости с коэффициентом вязкости Р. Если отпустить это тело, то оно падает в жидкости под действием силы тяжести FT= mg.
Задача5. Рассчитайте максимальное значение силы тока в цепи, изображенной на рис.7. До замыкания ключа заряд на конденсаторе равен q, второй конденсатор не заряжен. Воспользуйтесь электромеханической аналогией.
рис. 7.
Решение. Здесь происходит превращение потенциальной энергии в кинетическую или в соответствии с аналогией энергия электрического поля конденсатора превращается в энергию магнитного поля катушки.
так как и тогда
. Отсюда значение максимальной силы тока равно
Задача 6. Найти максимальную скорость груза на пружине в вязкой среде при действии на него переменной силы F=10 sin10 t(H) (рис. 8). Масса - груза 0,1 кг, жесткость пружины 2 Н/м, вязкость среды 1 Н. м/с.
Рис.8 Р е ш е н и е. В связи с тем что такой более сложный процесс, какой представлен в условии этой задачи, в школьном курсе физики не изучается, снова обратимся к аналогии. Аналогичная электрическая система выглядит как колебательный контур, содержащий внешний источник переменного тока (рис. 9). Рис.9 Из закона Ома для переменного тока (обозначения традиционные) максимальная сила тока
Установим соответствия характеристик механической и электрической систем: f U: ß R:m L: K 1/C. Учитывая аналогичность систем, получаем: = При подстановке следующих данных: F=10Н, =10с-1, ß=1 Н•м/с, w=0,1кг, K=2 Н/м окончательно получаем vm 1,28 м/с.
Задача 7. Источник с ЭДС и нулевым внутренним сопротивлением соединен последовательно с катушкой индуктивности L и конденсатором С (рис. 10). В начальный момент времени конденсатор не заряжен. Найти зависимость от времени напряжения на конденсаторе после замыкания ключа. рис.10. Решение. Искать нужную зависимость, используя законы электромагнетизма, довольно сложно и не наглядно, поэтому целесообразно использовать механическую аналогию. На рис.11 приведена аналогичная механическая колебательная система. Аналогом источника с ЭДС может служить поле силы тяжести. При выдергивании подставки из-под прикрепленного к пружине груза начинаются его колебания. Он совершает гармоническое колебание около точки Xm, график которого дан на рис. 12. а. Уравнение координаты имеет вид: xm-x(t)=xm cos w o t, или x(t)=xm (1 - cos w o t). Рис. 11 Рис. 12 Аналогичное электрическое колебание (график дан на рис. 12, б) описывается следующими уравнениями: q (t)=qм (1 – cos w o t); qм = С, q (t)=C (1 — cos w o t), U(t)= , U(f)= (1 — cos w o t). Здесь w o = . В заключение отметим, что рассмотренные нами аналогии широко используются в научных исследованиях. Интересно, что принцип работы аналого-вычислительной машины основан на «поразительной аналогичности» механического и электрического процессов. Интерференция света. Интерференция света представляет собой сложное явление, объяснение которого требует рассмотрения вопроса о наложении волн, об условиях усиления и ослабления колебаний и т. д. Здесь применяют аналогию с поверхностными волнами на воде. Вначале, возбудив в волновой ванне две волны, наблюдают результат их наложения и объясняют полученную картину(рис.1).
Рис.1. В любой точке М на поверхности воды будут складываться колебания, вызванные двумя волнами (от источников O1 и О2). Амплитуды колебаний вызванных в т.М будут отличаться друг от друга, так как волны проходят различные пути D1 и D2. Но если расстояние l между источниками много меньше этих путей (l <<D1и l<<D2), то обе амплитуды можно считать одинаковыми. Результат сложения волн в точке М зависит от разности фаз между ними. Пройдя различные расстояния, волны имеют разность хода ΔD=D2-D1 Если разность хода равна длине волны l, то вторая волна запаздывает по сравнению с первой ровно на один период. Следовательно, в этом случае гребни (впадины) обеих волн совпадают. Сложение волн в зависимости от разности их хода объясняют на специально вычерченных графиках, показывая, как складываются колебания при условии совпадения фаз и в случае когда колебания происходят в противофазе. Зависимость от времени смещения х1 и х2 вызванных двумя волнами при DD=l. Разность фаз колебаний равна нулю, так как период синуса равен 2p (рис.2).
Рис. 2 В результате сложения этих колебаний возникает результирующее колебание с удвоенной амплитудой. Колебания результирующего смещения x показаны пунктиром. То же самое будет происходить, если на отрезке DD укладывается не одна, а любое целое число длин волн: DD=kl, k=0, 1, 2…. – условие максимума. Пусть теперь на отрезке DD укладывается половина длины волны (рис.3).
Рис.3. Вторая половина отстает от первой на половину периода. Разность фаз оказывается равной p, то есть колебания будут происходить в противофазе. В результате сложения этих колебаний амплитуда результирующего колебания равна нулю, то есть в рассматриваемой точке колебаний нет. Тоже самое происходит если на отрезке укладывается любое нечетное число полуволн. DD=(2k+1)l/2, k=0,1,2... - условие минимума. Аналогично интерференции поверхностных водяных волн происходит и интерференция световых волн, но осуществить это явление значительно сложнее. Необходимо учитывать, что условия излучения и природа этих волн различны, а общее между ними только в периодичности процессов. Перед демонстрацией опытов по интерференции света следует рассмотреть вопрос о когерентных источниках волн. Когерентность поверхностных волн на воде легко осуществляют в волновой ванне с помощью двух связанных между собой вибраторов. Два обычных источника света не являются когерентными. Учащимся необходимо пояснить, что для получения устойчивой картины интерференции света надо использовать специальные установки, в которых заставляют интерферировать два пучка одной и той же волны, излучаемые одним источником, но идущие к точке наблюдения различными путями. После этого демонстрируют интерференцию света и по аналогии объясняют интерференционную картину. Проводя аналогию между световыми и поверхностными водяными волнами, показывают сходство и различие явлений различной природы. Дифракция света.
Явление дифракции света рассматривают по аналогии с дифракцией поверхностных волн на воде. Для этой цели в волновой ванне показывают явление дифракции волн (отклонение волн от прямолинейного распространения), ставя на пути волн препятствия, размеры которых соизмеримы с длиной волны. Получают дифракцию на препятствии и на щели. Когда явление дифракции с помощью поверхностных водяных волн разъяснено, переходят к дифракции света. Но перед демонстрацией соответствующих опытов останавливаются на различии дифракции света и дифракции длинных поверхностных волн. Так как поверхностные водяные волны иллюстрируют огибание волнами препятствий, без последующего распределения максимумов и минимумов, то есть поверхностные волны подчиняются принципу Гюйгенса – Френеля. В случае световых волн имеет место не только огибание препятствий, но и сложение волн. Поэтому, наблюдая дифракцию света, видят проявление максимумов и минимумов освещенности, что является результатом интерференции (наложении) волн. При рассмотрении дифракции света можно использовать таблицу 3, в которой сопоставляются дифракционные картины от освещенной щели и в волновой ванне при различной ширине щели. Таблица 3.
Поляризация света.
Как известно, электромагнитные волны поперечны. Так как свет имеет электромагнитную природу, то световые волны также поперечны. Чтобы разобраться в опытах по поляризации света необходимо уяснить понятие плоско поляризованного света и действие поляризатора, и анализатора. Плоскополяризованными волнами называют поперечные волны, колебания в которых происходят в одной плоскости вдоль прямой, перпендикулярной направлению распространения. Такими являются волны на шнуре, поэтому свойства плоскополяризованных волн можно наглядно объяснить. Для этой цели берут щель между двумя досками. Если эту щель расположить вертикально, то волны бегущие по шнуру, раскачиваемому в вертикальной плоскости, свободно пройдут через щель (рисю.4,а). Если же щель повернуть на 90, то волны через щель не пройдут и будут полностью погашены (рис.4,б).
Рис.4 а) б)
Естественный свет не поляризован, но его поляризацию можно осуществить с помощью приборов – поляризаторов, действие которых аналогично действию щели в опыте со шнуром. В поляризатор пропускают лишь лучи с определенной плоскостью колебаний светового вектора Е. Обнаруживают поляризацию света с помощью анализаторов, действие которых аналогично действию указанной щели, плоскость которых параллельна щели. Применение этой аналогии делает явление поляризации света понятным и доступным.
Цепь постоянного тока. При введении понятия об электрическом токе полезна аналогия с течением воды в турбине. Аналогия становится особенно образной, если к этому времени введено понятие об электроне, тогда электрический ток представляется как упорядоченное движение электронов в проводнике. Весьма полезна гидродинамическая аналогия и при знакомстве с источникоми тока. На полюсах источника тока создается напряжение. Заряды (электроны, ионы), которые перемещаются в проводниках (металлах, электролитах), имеются в самих проводниках. Они движутся хаотически, но если проводник присоединить к полюсам источника тока, то заряды придут в упорядоченное движение, то есть появится ток. Поэтому здесь целесообразна аналогия источника тока с насосом. В гидродинамической системе (рис.1) насос не создает воду, а лишь вызывает ее перемещение. рис.1 Аналогично насосу и действие источника тока в электрической цепи. Насос создает разность давлений (напор), что может быть аналогом напряжения. Турбина аналогична потребителю, насос - источнику тока, трубки с водой – соединительным проводам, а кран – выключателю. Приведем схему установки и ее работу, предложенную С. Е. Каненецким и Н.Н. Солодухиным. Установка для демонстрации гидродинамической аналогии электрической цепи состоит из центробежного насоса с электродвигателем 1, водяной турбины 2, манометра 3, расходомера 4, соединительных резиновых трубок 5 и кранов 6 и 7 (рис.2).
рис.2. В начале установку собирают без расходомера и манометра. Число оборотов двигателя регулируют реостатом, в результате центробежный насос создает разный напор воды. Водяная турбина состоит из плексигласа (рис.3). рис.3. Вода в нее поступает через сопло 1 вверху турбины, приводит в движение ротор 2 и выходит через отверстие 3. Ось ротора установлена в подшипниках и вращается с малым трением. При увеличении числа оборотов двигателя увеличивается напор воды и ротор турбины вращается быстрее. К турбине присоединяют манометр через специальные трубки 4, имеется кран 5. Сбоку турбины укреплен металлический стержень 6, с помощью которого ее устанавливают на лабораторном штативе. Для герметичности турбины между корпусом и крышкой поставлена резиновая прокладка. В расходомере (изготовленном из плексигласа) имеется канал, по которому протекает вода, приведенная в движение насосом. В канале перпендикулярно дв ижущемуся потоку расположена площадка, соединенная со стрелкой расходомера. Укрепляют расходомер на специальном штативе с помощью вертикального стержня. С другими приборами он соединен резиновыми трубками. Вверху расходомера имеется отверстие, закрепленное винтом, необходимым для выпуска воздуха при заполнении системы водой. Демонстрации с установкой сводятся к следующему. Когда установка состоит из насоса и трубки (рис.4) демонстрируют циркуляцию воды, аналогичную движению зарядов в электрической цепи. рис.4. Поочередно закрывая краны, показывают, что краны можно установить в любом месте. Аналогично этому в электрической цепи можно установить где угодно выключатель.
Когда установка собрана с расходомером (рис.5) изменяют число оборотов двигателя (меняют напор воды) и стрелка расходомера сильно отклоняется. Сжимая в любом месте резиновую трубку, показывают изменение потока воды при одном и том же напоре. рис.5. Когда установка собрана целиком (см. рис. 2), обращают внимание на показания манометра, который аналогичен вольтметру в электрической цепи. Одновременно демонстрируют величины, аналогичные электродвижущей силе и напряжению. Действительно, если открыть кран 6, а кран 7 закрыть, то циркуляции воды не будет, и манометр покажет максимальную разность давлений при таком числе оборотов. Это показание манометра аналогично электродвижущей силе. Если же кран 7 открыть, то вследствие движения воды турбина приходит в движение и показания манометра уменьшаются. (Показания манометра аналогичны напряжению, а показания расходомера — току.) Изменяя сопротивление трубок (набор трубок различного поперечного сечения и длины) движению воды, показывают зависимость между напором и сопротивлением движению воды, которая аналогична закону Ома для полной цепи. Познакомив учащихся с отдельными элементами электрической цепи, надо собрать простейшую электрическую цепь (потребитель — лампа накаливания, источник тока - батарея элементов, соединительные провода и выключатель),
а рядом с ней расположить соответствующую установку для демонстрации гидродинамической аналогии (рис.2). Видно, что при работе насоса создается разность давлений (напор), под действием которого вода перемещается по трубкам и приводит в движение турбину. Вода в системе циркулирует. Аналогично происходит направленное перемещение зарядов в электрической цепи. Разрыв цепи (в любом месте) нарушает это движение. Последнее дает возможность исключить часто встречающуюся ошибку: учащиеся полагают, что ключ в цепи ставят не в любом месте, а обязательно между положительным полюсом источника тока и потребителем. Одновременно с этим объясняют, что в системе происходят определенные превращения энергии и что основным потребителем энергии является турбина.
Затем рассматривают явления в цепях переменного тока с емкостью и индуктивностью, а также сдвиг фаз между током и напряжением.
В курсе электричества 8 класса картина меняется: модель атома становится доминирующей. Здесь у учащихся формируется представление об атоме как о сложной динамической системе, состоящей из сконцентрированной в небольшом объеме положительной части – ядра и электронов, движущихся относительно ядра и несущих отрицательный заряд. Планетарную модель атома доказывают опытом Резерфорда по рассеянию α – частиц металлическими пластинками. Известно несколько моделей этого опыта. Например, при описании опыта Резерфорда использована аналогия с зондированием кипы сена с помощью пуль. При этом по траектории пуль можно определить, где спрятаны куски металла. При рассказе о ядерной модели атома применяют аналогию с солнечной системой. Здесь важны образные сравнения – аналогии: масса ядра атома в несколько тысяч раз больше массы электрона (например, масса ядра атома водорода больше массы электрона в 2000 раз), так же как и масса Солнца больше массы отдельной планеты в несколько сотен тысяч раз (например, больше массы Земли в 333000 раз). Другое сравнение: диаметр ядра примерно в 10000 раз меньше диаметра атома; аналогично, диаметр Солнца (13000 км) во много миллионов раз меньше размеров солнечной системы. Эти сравнения помогают учащимся создать представление о масштабах ядерной модели атома. Но движение электронов относительно ядра более сложнее, чем орбитальное движение планет и оно подчиняется другим законам. Ядерную модель атома затем используют для объяснения электризации тел, явления электропроводности, при изучении электрического тока в металлах и электролитах. О дальнейшем развитии планетарной модели атома рассказывают после изучения фотоэффекта. Для объяснения закономерностей фотоэффекта вводят представление о дискретности светового излучения, а также понятие о фотоне как элементарной частице света с энергией Е=hν. Отсюда возникает вопрос: является ли дискретность энергетических состояний свойством, характерным лишь для излучающих твердых тел, или же эта дискретность присуща любым атомным системам? Подобные рассуждения привели в 1913 году И. Бора к предположению о неприменимости максвелловской электродинамики к электронам, движущимся в атомах. В основу своей теории Н. Бор положил следующие постулаты: 1) в атоме происходят движения электронов по некоторым стационарным круговым орбитам без излучения; 2) стационарными будут те орбиты, для которых момент количества движения электрона mvR равен целому кратному величины h/2π, то есть mvnRn=nh/2π, где n=1, 2, 3….
3) излучение и поглощение света атомами происходит при переходе электронов с одних стационарных орбит на другие. Планетарная модель атома в теории Бора “модернизирована”, то есть электроны могут перескакивать с орбиты на орбиту, когда атом переходит из одного стационарного состояния в другое. Так, при изложении вопроса об излучении света атомом существует аналогия с реальным макропроцессом—вылетом стрелы из лука. Оба процесса возможны только в том случае, если участвующие в них объекты (атом, лук) находятся в возбужденном состоянии (в последнем случае под «возбуждением» понимается натяжение тетивы). Тетива и атом в конечном счете возвращаются в невозбужденное состояние (ему соответствует наименьшее из возможных значение энергии); при этом соблюдается закон сохранения энергии (потенциальная энергия упруго деформированной тетивы переходит в кинетическую энергию стрелы, а энергия возбуждения атома«уносится» фотоном: Е2-Е1=hν. Однако между этими явлениями есть различие: 1) при натяжении тетивы ей может быть сообщена любая энергия, т. е. ее энергия может изменяться непрерывно; для возбуждения атома ему нужно сообщить определенную порцию (квант) энергии, соответствующую разности уровней энергии, между которыми осуществляется «переход» электрона в рамках модели Резерфорда—Бора; 2) возвращаясь в «невозбужденное» состояние, тетива «проходит» все промежуточные состояния (значения энергии),, таких состояний, очевидно, бесчисленное множество; электрон же в атоме переходит из любого возбужденного состояния в нормальное либо одним, либо несколькими последовательными скачками, минуя промежуточные значения энергии; 3) стрела, символизирующая световой квант, существовала до возбуждения тетивы и до вылета покоилась относительно лука, при вылете она постепенно набирала скорость от нуля до какого-то максимального значения; фотон “рождается” лишь благодаря переходу атома из состояния с большей энергией в состояние с меньшей энергией, т.е. переходу электрона на более низкую орбиту; покоящегося же (относительно любой системы отчета) фотон не существует: фотон сразу приобретает скорость света. Постулаты Бора дают возможность вычислить полную энергию атома исходя из уравнений:
mvR=nh/2π (1)
(2) (3)
V=nh/2πmR; n2h2/4π2mR3=Ze2/R2
R=n2h2/Ze24π2m
E=- (4) где n =1, 2, 3….. Полную энергию атома при определенном стационарном состояии называют энергетическим уровнем. Вычисляя значения E при n=1, E при n=2 и т. д., получаем ряд значений энергии: Е1=-13,53 эВ; Е2=-3,4 эВ; Е3=-1,5 эВ; Е4=-0,8 эВ и т.п. При n=∞ Е∞=0. После вычислений строим график (рис.5.):
Рис.5. Ось энергии в этом графике берут вертикальной, за начало отсчета выбирают энергию атома, когда его электрон удален в бесконечность – это нулевой уровень энергии атома. Так как энергия атома орбитальна, то все последующие значения энергии будут ниже нулевого уровня. Минимум энергии (E1=-13,53эВ) атома соответствует невозбужденному его состоянию, когда электрон находится на наиболее близкой к ядру орбите. Выбирают масштаб таким образом, чтобы потом легко было разделить отрезок, соответствующий расстоянию между уровнями E∞ и E1 на 4, 9, 16 и т. д., равных частей. Построенное таким образом изображение значений энергии атома в различных его состояниях называют энергетической моделью атома. Энергетическая модель атома дает ряд объяснений: а) объяснение происхождения линейчатых спектров. Линейчатый спектр испускания объясняют переходом атома, находящегося в возбужденном состоянии, с высшего энергетического уровня на более низкий. Например, при переходе со второго энергетического уровня на первый энергия атома уменьшается на Е2-Е1=1,77 эВ; при этом испускается фотон света с длиной волны, равной λ= Линии поглощения в спектре атома образуются в результате перехода атома с энергетического уровня, соответствующего невозбужденному состоянию атома, на более низкий уровень за счет энергии получаемой из вне. Так как атом обладает вполне определенными, дискретными значениями энергии, то и длины волн излучаемого или поглощаемого света вполне определены. Чем больше разность энергий уровня атома, тем меньшей длины волны испускается свет. б) Объяснение люминесценции. Механизм флюоресценции показан на рис.6.
Рис.6.
Фотон с энергией hν15 поглощается молекулой, переводя ее из состояния с энергией Е в возбужденное состояние Е1. Обратный переход может идти прямо (пунктирная линия) или в виде каскадного процесса, когда испускаются различные фотоны с энергиями hν54, hν42, hν21, причем энергия поглощенного фотона (hν0) может оказаться меньше суммарной энергии испускаемых фотонов (hν). Часть энергии фотона (А) передается соседним молекулам и затрачивается на различные внутримолекулярные процессы. Поэтому справедливо равенство: hν = hν0 –A Откуда ν < ν 0, λ > λ0,то есть длина волны испускаемого света при люминесценции меньше длины волны падающего света. Фосфоресценцию наблюдают в кристаллах, где центрами свечения являются атомы, ионы или группы их. Электрон, возбужденный поглощаемым светом, нередко отделяется от центра свечения. При возвращении электрона на прежнее место свечение возобновляется. Так как скорость перемещения электрона в кристалле мала, то свечение может продолжаться длительное время. Поэтому при изучении энергетических диаграмм полезно сопоставить их с планетарной моделью Резерфорда – Бора, обратив внимание на важные моменты: 1. В энергетической модели орбит нет, указываются лишь энергии атомов в определенных состояниях. 2. В соответствии с этим речь идет не о перескоках с орбиты на орбиту, а о переходе атомов из состояния с большей энергие
|
||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2020-03-13; просмотров: 544; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.192.113 (0.013 с.) |