Информационное управление клеточными процессами 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Информационное управление клеточными процессами



Информационное управление клеточными процессами

Калашников Юрий Яковлевич

Живая клетка – это чрезвычайно мощная информационная управляющая система, представляющая собой уникальный центр по синхронной переработке сразу трёх важнейших составляющих – органического вещества, химической энергии и молекулярной информации. Она является той элементарной биологической единицей, которая обладает всеми свойствами живого. Клетка обычно представляет собой микроскопический объект, где на молекулярном уровне рождается удивительный мир и жгучая загадка жизни. Можно сказать, что это и есть те, издревле разыскиваемые, таинственные “Врата Жизни”, из которых каждый из нас появляется на свет как информационный биологический аналог своих близких и далёких предков. Именно через клетку судьба нам дарит Жизнь – драгоценное диво Вселенной. В своей новой статье, которая является логическим продолжением и развитием идей молекулярной биологической информатики, автор предлагает к рассмотрению информационную концепцию самоуправления живой клеткой.

О структурной схеме.

Живая клетка является элементарной самоуправляемой биологической единицей. Она относится к информационной управляющей и открытой биохимической системе, извлекающей свободную энергию и сырьевые ресурсы из окружающей среды. Основой её организации является информационная молекулярно-биологическая система управления. Управляющая система клетки содержит все необходимые узлы, устройства и компоненты, которые служат для хранения, передачи, переработки и использования генетической информации в различных биологических процессах (см. структурную схему).

Процесс управления в сложных технических устройствах и в живой клетке, в определённой мере, выполняет одни и те же задачи, хотя есть и существенные различия в информационных субстратах и в организации самих информационных процессов. Кроме того, если информация в технических устройствах есть функция аппаратной системы, то в живых клетках чаще всего наоборот, – информационные сообщения сами являются базовой основой построения или реорганизации аппаратной системы клетки (белков, ферментов и других функциональных устройств). Сердцем управляющей системы живой клетки являются генетическая память и локальные биопроцессорные контуры управления, находящиеся, как в цитоплазме клетки – трансляционный аппарат, так и биопроцессорные системы верхнего уровня, находящиеся в клеточном ядре – транскрипционный аппарат.

Живая клетка как элементарная основа жизни является не только центром “автоматизированной” переработки вещества, энергии и информации, но и объектом постоянной реконструкции её компонентов, надмолекулярных ансамблей и органелл. Она является центром синтеза и распада различных биологических макромолекул и структур. Причем, и это важно отметить, – все биологические функции и химические процессы в клетке поддерживаются и осуществляются только под руководством генетической информации. Следовательно, живая клетка самоуправляется и “реконструируется” информационным путём. Это удивительное свойство является основным фактором, определяющим движение клетки по пути клеточных циклов развития и самовоспроизведения.

Как видно из структурной схемы, клетка состоит из двух основных взаимозависимых и взаимосвязанных подсистем: из информационной управляющей (матричные процессы) и управляемой биохимической (ступенчатые процессы). Живая клетка является мультипроцессорной системой, она состоит из нескольких функциональных биопроцессорных блоков:

1) ядерных биопроцессорных блоков управления верхнего уровня (генетическая память, транскрипционный аппарат, устройства управления, блоки процессинга и каналы ввода/вывода);

2) цитоплазматических молекулярных биопроцессорных блоков управления (оперативная память РНК, трансляционный аппарат, устройство управления, блоки конформационного преобразования и процессинга);

3) выходного управляющего звена (ферментов и других клеточных белков), функционирующих во всех биопроцессорных системах и операционных блоках катаболизма, амфиболических путей, синтеза элементной базы и блока синтеза различных макромолекул клетки (белков, компонентов мембран и органелл и т. п.)

Именно в этих операционных блоках осуществляется управление ступенчатыми химическими реакциями клеточного метаболизма [6].

Генетическая память.

Хранилищем и источником наследственной информации в каждой живой клетке является ДНК хромосом. Генетическая память, как долговременное запоминающее устройство, служит для длительного хранения данных и программ. Однако, естественно, всегда надо помнить, что генетическая память хромосом – это понятие несравненно более обширное и более грандиозное, чем, к примеру, память компьютерная. К этой многосложной молекулярной структуре, отождествляющей “спираль жизни”, нельзя относиться без особого уважения и благоговения.

Генетическая память обладает феноменальными информационными возможностями. И, действительно, в последовательности оснований внутри двойной спирали ДНК закодирована вся необходимая информация для осуществления жизнедеятельности, развития и самовоспроизведения живой системы. Генетическая память имеет: операционную систему; полный набор программных средств для обслуживания ступенчатых процессов катаболизма и энергетического обеспечения; программные средства для обслуживания процессов биосинтеза молекул, систем репарации ДНК, аппаратных устройств ввода молекулярной информации питательных веществ и вывода конечных продуктов обмена веществ и т. д.

Генетическая память живой клетки имеет пакет программ, кодирующих и программирующих молекулярные средства и механизмы самовоспроизведения, которые начинают синтезироваться и действовать строго в соответствии с общей программой развития. А программирование самой генетической памяти осуществляется особым репликативным аппаратом живой клетки в S-период её развития, и дочерние клетки получают полный дубликат генетического материала. Этот аппарат является молекулярной биопроцессорной системой репликации.

Программное обеспечение клетки – это важнейший проблемный вопрос молекулярной биологической информатики. В генетической памяти хранится множество пакетов программ, обеспечивающих те или иные биологические функции и процессы. Поэтому “автоматизированное” управление процессами решения различных биологических задач в живой системе осуществляется на основе принципа программного управления. Для программной переработки генетической информации широко применяется принцип микропрограммного управления, когда выполнение одной биологической операции (например, в процессах репликации, транскрипции или трансляции), распадается на последовательность отдельных элементарных операций. А главной задачей программных средств, используемых в живых клетках, является обеспечение оперативного взаимодействия управляющей системы с молекулярными объектами управления (субстратами). Причем, ключ к решению биологических задач, с помощью управляющей системы, лежит не в переборе вариантов при поиске решений.

Программы, загруженные в структуру белковых и других биомолекул, реализуют стереохимические принципы узнавания и динамического взаимодействия, которые гарантируют точность матричного спаривания биологических молекул и проверку их на комплементарное соответствие друг другу. То есть в процессе взаимодействия биомолекул широко используются принципы обратной связи. Этим достигается не только повышенная помехоустойчивость при прохождении управляющей информации, но и высокая достоверность передачи сообщений. В свете рассмотренных идей (молекулярной биохимической логики и информатики), становятся понятными и механизмы организации доступа к информации генетической памяти. Хромосомы ядра, благодаря присутствию в них структурных и регуляторных белков, а также “малых” двухцепочечных РНК, являются чрезвычайно активными динамическими компонентами клетки. Гибкость ДНК в составе хромосом позволяет регуляторным белкам и РНК информационно связываться с различными её участками и влиять на транскрипцию генов. При этом каждый из этих управляющих белков и “малых” РНК, благодаря загруженной в их структуру информации и своим стереохимическим кодовым компонентам, – четко знает свою функциональную роль.

Согласованность действия различных управляющих, а также регуляторных белков и “малых” РНК достигается за счет генетической информации, которая заранее была загружена в их структуру. А загруженные в их структуру программы являются составляющими того пакета программ, который предназначен как для организации автоматического доступа к генам ДНК, так и для управления и регуляции процессами транскрипции генетического материала. В силу этих обстоятельств отдельные домены хроматина в хромосомах в процессе функционирования разворачиваются, а после окончания считывания информации с генов ДНК вновь упаковываются. Поэтому сами хромосомы представляют собой активные динамические структуры, в разных участках которых идут процессы считывания информации с ДНК.

Доступ к генетической памяти основан на тех же правилах информационного стереохимического управления и тех же принципах динамического взаимодействия биологических молекул друг с другом, которые являются основой управляющих био-логических процессов в живой клетке [6]. Нам остаётся лишь научиться расшифровывать и понимать эту информацию.

Список литературы

1. А. Ленинджер. Основы биохимии. Пер. с англ. в 3-х томах – М: Мир, 1985.

2. Ю. Я. Калашников. Ферменты и белки живой клетки – это молекулярные биологические автоматы с программным управлением. Дата публикации: 30 июня 2006г., источник: SciTecLibrary.ru; Сайт:, дата публикации: 13.12.2006г.

3. Ю. Я. Калашников. Кодирование и программирование биологических молекул. Дата публикации: 01.01.2007г., источник: http://new-idea.kulichki.com/

4. Ю. Я. Калашников. Единство вещества, энергии и информации – основной принцип существования живой материи. Дата публикации: 30 июня 2006г., источник: SciTecLibrary.ru; Сайт: http://new-idea.kulichki.com/, дата публикации: 07.12.2006г.

5. Ю. Я. Калашников. Аспекты молекулярной биохимической логики и информатики. Дата публикации: 05.12.2006г., источник: http://new-idea.kulichki.com/

6. Ю. Я. Калашников. Концепция информационной молекулярно-биологической системы управления. – М., 2005.–88с. – Депонир. в ВИНИТИ РАН 14.04.05, №505-В2005

7. П. Кемп, К. Армс. Введению в биологию. Пер. с англ. – М: “Мир”, 1988.

8. Б. Альбертс, Д. Брей и другие. Молекулярная биология клетки. Пер. с англ., Том 2 – М: “Мир”, 1994.

9. Ф. Айала, Дж. Кайгер. Современная генетика. Пер. с англ. в 3-х томах – М: Мир, 1988.

10. А. А. Анисимов, А. Н. Леонтьева и др. Основы биохимии. – “Высшая школа”, 1986. Дата публикации: 5 марта 2007

 

Информационное управление клеточными процессами

Калашников Юрий Яковлевич

Живая клетка – это чрезвычайно мощная информационная управляющая система, представляющая собой уникальный центр по синхронной переработке сразу трёх важнейших составляющих – органического вещества, химической энергии и молекулярной информации. Она является той элементарной биологической единицей, которая обладает всеми свойствами живого. Клетка обычно представляет собой микроскопический объект, где на молекулярном уровне рождается удивительный мир и жгучая загадка жизни. Можно сказать, что это и есть те, издревле разыскиваемые, таинственные “Врата Жизни”, из которых каждый из нас появляется на свет как информационный биологический аналог своих близких и далёких предков. Именно через клетку судьба нам дарит Жизнь – драгоценное диво Вселенной. В своей новой статье, которая является логическим продолжением и развитием идей молекулярной биологической информатики, автор предлагает к рассмотрению информационную концепцию самоуправления живой клеткой.



Поделиться:


Последнее изменение этой страницы: 2019-10-15; просмотров: 147; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.183.1 (0.014 с.)