Выводы по первой главе. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Выводы по первой главе.



ГЛАВА 2. Методика формирования понятия величины и ее

                измерение у младших школьников.                             

           2.1 Современные подходы к изучению величин в

                начальном курсе математики.                                    

           2.2 Система развивающих упражнений при изучении

                 величин в начальном курсе математики.                

Выводы по второй главе.                                                                      

ЗАКЛЮЧЕНИЕ.                                                                               

ЛИТЕРАТУРА.                                                                                    

                              


Введение.

Изучение в курсе математики начальной школы величин и их измерений имеет большое значение в плане развития младших школьников. Это обусловлено тем, что через понятие величины описываются реальные свойства предметов и явлений, происходит познание окружающей действительности; знакомство с зависимостями между величинами помогает создать у детей целостные представления об окружающем мире; изучение процесса измерения величин способствует приобретению практических умений и навыков, необходимых человеку в его повседневной деятельности. Кроме того знания и умения, связанные с величинами и полученные в начальной школе, являются основой для дальнейшего изучения математики.

По традиционной программе в конце третьего (четвёртого) класса дети должны:

-- знать таблицы единиц величин, принятые обозначения этих единиц и уметь применять эти знания в практике измерения и при решении задач,

-- знать взаимосвязь между такими величинами, как цена, количество, стоимость товара; скорость, время, расстояние,

-- уметь применять эти знания к решению текстовых задач,

-- уметь вычислять периметр и площадь прямоугольника (квадрата).

Однако, результат обучения показывает, что дети недостаточно усваивают материал, связанный с величинами: не различают величину и единицу величины, допускают ошибки при сравнении величин, выраженных в единицах двух наименований, плохо овладевают измерительными навыками. Это связано с организацией изучения данной

темы. В учебниках по традиционной программе недостаточно заданий, направленных на: выяснение и уточнение имеющихся у школьников представлений об изучаемой величине, сравнение однородных величин, формирование измерительных умений и навыков, сложение и вычитание величин, выраженных в единицах разных наименований.

Таким образом, чтобы улучшить математическую подготовку детей по теме «Величины и их измерение», необходимо пополнить её новыми упражнениями из системы развивающего обучения.  

Цель исследования состоит в выявлении и влияния на эффективность обучения системы развивающих упражнений на уроках математики при изучении темы «Величина и её измерение».

Объектом исследования является процесс обучения математики в начальной школе.

Задачи исследования:

 1)Изучить психолого-педагогическую и методическую литературу по данной проблеме;

   2)Определить методику работы над темой «Величины и их измерения»;

3)Выявить влияние использования системы упражнений развивающего обучения на качество знаний и умений учащихся.

 


Глава 1. Понятие величины и её измерения в начальном курсе математики.

 

1.1.Развивающее обучение в начальном курсе математики.

 

В настоящее время в начальной школе представлены системы образования, базирующиеся на традиционной системе обучения, а также на теориях, разработанных отечественными учёными Л.О.Выготским, Л.В.Занковым, Д.Б.Элькониным, В.В.Давыдовым. Все системы направлены на интеллектуальное и нравственное развитие детей.

В последние годы внимание педагогов всё чаще привлекают идеи развивающего обучения, с которыми связывается возможность принципиальных изменений в школе. Основная концепция системы развивающего обучения – обучение через создание учебной задачи.

Учебная задача в контексте учебной деятельности даётся в определении учебной ситуации, то есть выступает как единица целостного образовательного процесса.

По содержанию учебная ситуация может быть нейтральной или проблемной. Оба вида этих ситуаций представлены в обучении, но второе требует больших усилий учителя, поэтому при всей важности проблематизации обучения проблемные ситуации встречаются в учебном процессе реже. Создание проблемной ситуации предлагает наличие проблемы (задачи), то есть соотношения нового и известного (данного), учебно-познавательной потребности обучаемого и его способности (возможности) решать эту задачу. Проблемное обучение основано на получении новых знаний обучающимися посредством решения теоретических и практических проблем, проблемных задач в создающихся в силу этого проблемных ситуациях. Проблемная ситуация для младшего школьника возникает если у него есть познавательная потребность и интеллектуальные возможности решать задачу при наличии затруднения противоречия между старым и новым, известным и неизвестным, данным и искомым, условиями и требованиями. Проблемные ситуации дифференцируются, по А. М. Матюшкину, по критериям:

1) структуры действий, которые должны быть выполнены при решении         проблемы;

2) уровня развития этих действий у человека (младшего школьника), решающего проблему и эти трудности проблемной ситуации в зависимости от интеллектуальных возможностей. Проблемное обучение включает несколько этапов:

• осознание проблемной ситуации,

• формулировку проблемы на основе анализа ситуации,

• решение проблемы, включающее выдвижение, смену и проверку гипотез,

• проверку решения.

 Этот процесс развертывается, но аналогии с прохождением трёх Фаз мыслительного акта (по С.Л. Рубинштейну), который возникает в проблемной ситуации и включает осознание проблемы, её решения и конечное умозаключение. Поэтому проблемное обучение основывается на аналитико-синтетической деятельности обучающихся, реализуемой в рассуждении, размышлении. Это исследовательский тип обучения с большим развивающим потенциалом.

 Решение задачи в учебной проблемной ситуации предполагает несколько этапов.

ПЕРВЫЙ ЭТАП- это понимание задачи, сформулированной в готовом виде учителем или определяемой самим учеником. Последняя зависит от того, на каком уровне проблемности находится задача, и от способности ученика её решить.

ВТОРОЙ ЭТАП - «принятие» задачи учеником, он должен решать её для себя, она должна быть лично значима, а потому и принята к решению.

ТРЕТИЙ ЭТАП - связан с тем, что решение» задачи должно вызывать эмоциональное переживание «лучше удовлетворения, чем досады» неудовлетворения собой и желание поставить и решать собственную задачу и так далее. Здесь существенно отметить роль формулировки задания для правильного понимания задачи. Проблемное обучение может быть разного уровня трудности для ученика в зависимости от того, какие и сколько действий по решению проблемы он осуществляет. А. Крутецкий предложил наглядную схему уровней трудностей в проблемном обучении в сопоставлении с традиционным обучением на основании разделения действий учителя и ученика.

 

 

1.2. Понятие величины и её измерения в математике.

  Длина, площадь, масса, время, объём - величины. Первоначальное знакомство с ними происходит в начальной школе, где величина наряду с числом является ведущим понятием.

ВЕЛИЧИНА - это особое свойство реальных объектов или явлений, и особенность заключается в том, что это свойство можно измерить, то есть назвать количество величины, которые выражают одно и тоже свойство объектов, называются ве­личинами одного рода или однородными величинами. Например, длина стола и длина комнаты - это однородные величины. Величины - длина, площадь, масса и другие обладают рядом свойств.

1)Любые две величины одного рода сравнимы: они либо равны, либо одна меньше (больше) другой. То есть, для величин одного рода имеют место отношения «равно», «меньше», «больше» и для любых величин и справедливо одно и только одно из отношений: Например, мы говорим, что длина гипотенузы прямоугольного треугольника больше, чем любой катет данного треугольника; масса лимона меньше, чем масса арбуза; длины противоположных сторон прямоугольника равны.

 2)Величины одного рода можно складывать, в результате сложения получится величина того же рода. Т.е. для любых двух величин а и b однозначно определяется величина a+b, её называют суммой величин а и b. Например, если a-длина отрезка AB, b - длина отрезка ВС, то длина отрезка АС, есть сумма длин отрезков АВ и ВС.

3)Величину умножают на действительное число, получая в результате величину того же рода. Тогда для любой величины а и любого неотрицательного числа x существует единственная величина b= xa, величину b называют произведением величины а на число x. Например, если a - длину отрезка АВ умножить на x= 2, то получим длину нового отрезка АС.

4)Величины одного рода делят, определяя частное через произведение величины на число. Частным величин а и b-называется такое неотрицательное действительное число х, что а= х b. Чаще это число - называют отношением величин а и b и записывают в таком виде: a/b = х. Например, отношение длины отрезка АС к длине отрезка АВ равно 2.

5)Величины данного рода вычитают, определяя разность величин через сумму. Разностью величин а и b называется такая величина с, что а=b+c. Например, если а - длина отрезка АС, b - длина отрезка AB, то длина отрезка ВС есть разность длин отрезков и АС и АВ.

6) Отношение «меньше» для однородных величин транзитивно: если А<В и В<С, то А<С. Так, если площадь треугольника F1 меньше площади треугольника F2 площадь треугольника F2 меньше площади треугольника F3, то площадь треугольника F1 меньше площади треугольника F3.Величины, как свойства объектов, обладают ещё одной особенностью - их можно оценивать количественно. Для этого величину нужно измерить. Измерение - заключается в сравнении данной величины с некоторой величиной того же рода, принятой за единицу. В результате измерения получают число, которое называют численным значением при выбранной единице.

Процесс сравнения зависит от рода рассматриваемых величин: для длин он один, для площадей - другой, для масс - третий и так далее. Но каким бы ни был этот процесс, в результате измерения величина получает определённое численное значение при выбранной единице.

Вообще, если дана величина а и выбрана единица величины e, то в результате измерения величины а находят такое действительное число x, что а=x e. Это число x называют численным значением величины а при единице е. Это можно записать так: х=m (a).

Согласно определению любую величину можно представить в виде произведения некоторого числа и единицы этой величины. Например, 7 кг = 7 1 кг, 12 см =12 1 см, 15ч =15 1 ч. Используя это, а также определение умножения величины на число, можно обосновать процесс перехода от одной единицы величины к другой. Пусть, например, требуется выразить 5/12ч в минутах. Так как, 5/12ч = 5/12 60мин = (5/12 60)мин = 25мин.

 Величины, которые вполне определяются одним численным значением, называются скалярными величинами. Такими, к примеру, являются длина, площадь, объём, масса и другие. Кроме скалярных величин, в математике рассматривают ещё векторные величины. Для определения векторной величины необходимо указать не только её численное значение, но и направление. Векторными величинами являются сила, ускорение, напряжённость электрического поля и другие.

 В начальной школе рассматриваются только скалярные величины, причём такие, численные значения которых положительны, то есть положительные скалярные величины.

Измерение величин позволяет свести сравнение их к сравнению чисел, операции над величинами к соответствующим операциям над числами.

 1./Если величины а и b измерены при помощи единицы величины e, то отношения между величинами a и b будут такими же, как и отношения между их численными значениями, и наоборот.

a=b          m(a) = m(b),        

  a>b          m(a) > m(b), 

a<b     m(a) < m(b).

Например, если массы двух тел таковы, что а=5 кг, b=3 кг, то можно утверждать, что масса а больше массы b поскольку 5>3.

2./ Если величины а и b измерены при помощи единицы величины e, то, чтобы найти численное значение суммы a+b достаточно сложить

численные значения величин а и b. а+b=c m(a+b)=m(a)+m(b). Например, если а=15 кг, b=12 кг, то а+b=15 кг + 12 кг = (15+12) кг = 27кг

З./ Если величины а и b таковы, что b= xа, где x -положительное действительное число, и величина а, измерена при помощи единицы величины e, то чтобы найти численное значение величины b при единице e, достаточно число x умножить на число m(а):b=x a m(b)=xm(a).

Например, если масса а в 3 раза больше массы b.т.е. b=За и а = 2 кг, то b= За=3 (2 кг) = (3 2) кг = 6кг.

Рассмотренные понятия - объект, предмет, явление, процесс, его величина, численное значение величины, единица величины - надо уметь вычленять в текстах и задачах.

Например, математическое содержание предложения «Купили 3 килограмма яблок» можно описать следующим образом: в предложении рассматривается такой объект, как яблоки, и его свойство - масса; для измерения массы использовали единицу массы - килограмм; в результате измерения получили число 3 -численное значение массы яблок при единице массы - килограмм.

Рассмотрим определения некоторых величин и их измерений.



Поделиться:


Последнее изменение этой страницы: 2020-03-14; просмотров: 388; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.159.150 (0.026 с.)