Глава 1 . Понятие величины и ее измерения в начальном курсе 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Глава 1 . Понятие величины и ее измерения в начальном курсе



Величины и их измерение.

Выпускная квалификационная работа

 

 

2005.

 


СОДЕРЖАНИЕ.

ВВЕДЕНИЕ.                                                                                       

ГЛАВА 1. Понятие величины и ее измерения в начальном курсе

                математики.                                                                              

                   1.1 Развивающее обучение в начальном курсе математики.

1.2 Понятие величины и ее измерения в математике. 

Выводы по первой главе.                                                                          

ГЛАВА 2. Методика формирования понятия величины и ее

                измерение у младших школьников.                             

           2.1 Современные подходы к изучению величин в

                начальном курсе математики.                                    

           2.2 Система развивающих упражнений при изучении

                 величин в начальном курсе математики.                

Выводы по второй главе.                                                                      

ЗАКЛЮЧЕНИЕ.                                                                               

ЛИТЕРАТУРА.                                                                                    

                              


Введение.

Изучение в курсе математики начальной школы величин и их измерений имеет большое значение в плане развития младших школьников. Это обусловлено тем, что через понятие величины описываются реальные свойства предметов и явлений, происходит познание окружающей действительности; знакомство с зависимостями между величинами помогает создать у детей целостные представления об окружающем мире; изучение процесса измерения величин способствует приобретению практических умений и навыков, необходимых человеку в его повседневной деятельности. Кроме того знания и умения, связанные с величинами и полученные в начальной школе, являются основой для дальнейшего изучения математики.

По традиционной программе в конце третьего (четвёртого) класса дети должны:

-- знать таблицы единиц величин, принятые обозначения этих единиц и уметь применять эти знания в практике измерения и при решении задач,

-- знать взаимосвязь между такими величинами, как цена, количество, стоимость товара; скорость, время, расстояние,

-- уметь применять эти знания к решению текстовых задач,

-- уметь вычислять периметр и площадь прямоугольника (квадрата).

Однако, результат обучения показывает, что дети недостаточно усваивают материал, связанный с величинами: не различают величину и единицу величины, допускают ошибки при сравнении величин, выраженных в единицах двух наименований, плохо овладевают измерительными навыками. Это связано с организацией изучения данной

темы. В учебниках по традиционной программе недостаточно заданий, направленных на: выяснение и уточнение имеющихся у школьников представлений об изучаемой величине, сравнение однородных величин, формирование измерительных умений и навыков, сложение и вычитание величин, выраженных в единицах разных наименований.

Таким образом, чтобы улучшить математическую подготовку детей по теме «Величины и их измерение», необходимо пополнить её новыми упражнениями из системы развивающего обучения.  

Цель исследования состоит в выявлении и влияния на эффективность обучения системы развивающих упражнений на уроках математики при изучении темы «Величина и её измерение».

Объектом исследования является процесс обучения математики в начальной школе.

Задачи исследования:

 1)Изучить психолого-педагогическую и методическую литературу по данной проблеме;

   2)Определить методику работы над темой «Величины и их измерения»;

3)Выявить влияние использования системы упражнений развивающего обучения на качество знаний и умений учащихся.

 


Глава 1. Понятие величины и её измерения в начальном курсе математики.

 

1.1.Развивающее обучение в начальном курсе математики.

 

В настоящее время в начальной школе представлены системы образования, базирующиеся на традиционной системе обучения, а также на теориях, разработанных отечественными учёными Л.О.Выготским, Л.В.Занковым, Д.Б.Элькониным, В.В.Давыдовым. Все системы направлены на интеллектуальное и нравственное развитие детей.

В последние годы внимание педагогов всё чаще привлекают идеи развивающего обучения, с которыми связывается возможность принципиальных изменений в школе. Основная концепция системы развивающего обучения – обучение через создание учебной задачи.

Учебная задача в контексте учебной деятельности даётся в определении учебной ситуации, то есть выступает как единица целостного образовательного процесса.

По содержанию учебная ситуация может быть нейтральной или проблемной. Оба вида этих ситуаций представлены в обучении, но второе требует больших усилий учителя, поэтому при всей важности проблематизации обучения проблемные ситуации встречаются в учебном процессе реже. Создание проблемной ситуации предлагает наличие проблемы (задачи), то есть соотношения нового и известного (данного), учебно-познавательной потребности обучаемого и его способности (возможности) решать эту задачу. Проблемное обучение основано на получении новых знаний обучающимися посредством решения теоретических и практических проблем, проблемных задач в создающихся в силу этого проблемных ситуациях. Проблемная ситуация для младшего школьника возникает если у него есть познавательная потребность и интеллектуальные возможности решать задачу при наличии затруднения противоречия между старым и новым, известным и неизвестным, данным и искомым, условиями и требованиями. Проблемные ситуации дифференцируются, по А. М. Матюшкину, по критериям:

1) структуры действий, которые должны быть выполнены при решении         проблемы;

2) уровня развития этих действий у человека (младшего школьника), решающего проблему и эти трудности проблемной ситуации в зависимости от интеллектуальных возможностей. Проблемное обучение включает несколько этапов:

• осознание проблемной ситуации,

• формулировку проблемы на основе анализа ситуации,

• решение проблемы, включающее выдвижение, смену и проверку гипотез,

• проверку решения.

 Этот процесс развертывается, но аналогии с прохождением трёх Фаз мыслительного акта (по С.Л. Рубинштейну), который возникает в проблемной ситуации и включает осознание проблемы, её решения и конечное умозаключение. Поэтому проблемное обучение основывается на аналитико-синтетической деятельности обучающихся, реализуемой в рассуждении, размышлении. Это исследовательский тип обучения с большим развивающим потенциалом.

 Решение задачи в учебной проблемной ситуации предполагает несколько этапов.

ПЕРВЫЙ ЭТАП- это понимание задачи, сформулированной в готовом виде учителем или определяемой самим учеником. Последняя зависит от того, на каком уровне проблемности находится задача, и от способности ученика её решить.

ВТОРОЙ ЭТАП - «принятие» задачи учеником, он должен решать её для себя, она должна быть лично значима, а потому и принята к решению.

ТРЕТИЙ ЭТАП - связан с тем, что решение» задачи должно вызывать эмоциональное переживание «лучше удовлетворения, чем досады» неудовлетворения собой и желание поставить и решать собственную задачу и так далее. Здесь существенно отметить роль формулировки задания для правильного понимания задачи. Проблемное обучение может быть разного уровня трудности для ученика в зависимости от того, какие и сколько действий по решению проблемы он осуществляет. А. Крутецкий предложил наглядную схему уровней трудностей в проблемном обучении в сопоставлении с традиционным обучением на основании разделения действий учителя и ученика.

 

 

1.2. Понятие величины и её измерения в математике.

  Длина, площадь, масса, время, объём - величины. Первоначальное знакомство с ними происходит в начальной школе, где величина наряду с числом является ведущим понятием.

ВЕЛИЧИНА - это особое свойство реальных объектов или явлений, и особенность заключается в том, что это свойство можно измерить, то есть назвать количество величины, которые выражают одно и тоже свойство объектов, называются ве­личинами одного рода или однородными величинами. Например, длина стола и длина комнаты - это однородные величины. Величины - длина, площадь, масса и другие обладают рядом свойств.

1)Любые две величины одного рода сравнимы: они либо равны, либо одна меньше (больше) другой. То есть, для величин одного рода имеют место отношения «равно», «меньше», «больше» и для любых величин и справедливо одно и только одно из отношений: Например, мы говорим, что длина гипотенузы прямоугольного треугольника больше, чем любой катет данного треугольника; масса лимона меньше, чем масса арбуза; длины противоположных сторон прямоугольника равны.

 2)Величины одного рода можно складывать, в результате сложения получится величина того же рода. Т.е. для любых двух величин а и b однозначно определяется величина a+b, её называют суммой величин а и b. Например, если a-длина отрезка AB, b - длина отрезка ВС, то длина отрезка АС, есть сумма длин отрезков АВ и ВС.

3)Величину умножают на действительное число, получая в результате величину того же рода. Тогда для любой величины а и любого неотрицательного числа x существует единственная величина b= xa, величину b называют произведением величины а на число x. Например, если a - длину отрезка АВ умножить на x= 2, то получим длину нового отрезка АС.

4)Величины одного рода делят, определяя частное через произведение величины на число. Частным величин а и b-называется такое неотрицательное действительное число х, что а= х b. Чаще это число - называют отношением величин а и b и записывают в таком виде: a/b = х. Например, отношение длины отрезка АС к длине отрезка АВ равно 2.

5)Величины данного рода вычитают, определяя разность величин через сумму. Разностью величин а и b называется такая величина с, что а=b+c. Например, если а - длина отрезка АС, b - длина отрезка AB, то длина отрезка ВС есть разность длин отрезков и АС и АВ.

6) Отношение «меньше» для однородных величин транзитивно: если А<В и В<С, то А<С. Так, если площадь треугольника F1 меньше площади треугольника F2 площадь треугольника F2 меньше площади треугольника F3, то площадь треугольника F1 меньше площади треугольника F3.Величины, как свойства объектов, обладают ещё одной особенностью - их можно оценивать количественно. Для этого величину нужно измерить. Измерение - заключается в сравнении данной величины с некоторой величиной того же рода, принятой за единицу. В результате измерения получают число, которое называют численным значением при выбранной единице.

Процесс сравнения зависит от рода рассматриваемых величин: для длин он один, для площадей - другой, для масс - третий и так далее. Но каким бы ни был этот процесс, в результате измерения величина получает определённое численное значение при выбранной единице.

Вообще, если дана величина а и выбрана единица величины e, то в результате измерения величины а находят такое действительное число x, что а=x e. Это число x называют численным значением величины а при единице е. Это можно записать так: х=m (a).

Согласно определению любую величину можно представить в виде произведения некоторого числа и единицы этой величины. Например, 7 кг = 7 1 кг, 12 см =12 1 см, 15ч =15 1 ч. Используя это, а также определение умножения величины на число, можно обосновать процесс перехода от одной единицы величины к другой. Пусть, например, требуется выразить 5/12ч в минутах. Так как, 5/12ч = 5/12 60мин = (5/12 60)мин = 25мин.

 Величины, которые вполне определяются одним численным значением, называются скалярными величинами. Такими, к примеру, являются длина, площадь, объём, масса и другие. Кроме скалярных величин, в математике рассматривают ещё векторные величины. Для определения векторной величины необходимо указать не только её численное значение, но и направление. Векторными величинами являются сила, ускорение, напряжённость электрического поля и другие.

 В начальной школе рассматриваются только скалярные величины, причём такие, численные значения которых положительны, то есть положительные скалярные величины.

Измерение величин позволяет свести сравнение их к сравнению чисел, операции над величинами к соответствующим операциям над числами.

 1./Если величины а и b измерены при помощи единицы величины e, то отношения между величинами a и b будут такими же, как и отношения между их численными значениями, и наоборот.

a=b          m(a) = m(b),        

  a>b          m(a) > m(b), 

a<b     m(a) < m(b).

Например, если массы двух тел таковы, что а=5 кг, b=3 кг, то можно утверждать, что масса а больше массы b поскольку 5>3.

2./ Если величины а и b измерены при помощи единицы величины e, то, чтобы найти численное значение суммы a+b достаточно сложить

численные значения величин а и b. а+b=c m(a+b)=m(a)+m(b). Например, если а=15 кг, b=12 кг, то а+b=15 кг + 12 кг = (15+12) кг = 27кг

З./ Если величины а и b таковы, что b= xа, где x -положительное действительное число, и величина а, измерена при помощи единицы величины e, то чтобы найти численное значение величины b при единице e, достаточно число x умножить на число m(а):b=x a m(b)=xm(a).

Например, если масса а в 3 раза больше массы b.т.е. b=За и а = 2 кг, то b= За=3 (2 кг) = (3 2) кг = 6кг.

Рассмотренные понятия - объект, предмет, явление, процесс, его величина, численное значение величины, единица величины - надо уметь вычленять в текстах и задачах.

Например, математическое содержание предложения «Купили 3 килограмма яблок» можно описать следующим образом: в предложении рассматривается такой объект, как яблоки, и его свойство - масса; для измерения массы использовали единицу массы - килограмм; в результате измерения получили число 3 -численное значение массы яблок при единице массы - килограмм.

Рассмотрим определения некоторых величин и их измерений.

Выводы по первой главе.

  

В первой главе мы рассмотрели, как дифференцируются проблемные ситуации по А.М. Матюшкину, какие этапы включает проблемное обучение. Выяснили, что решение задачи в учебной проблемной ситуации предполагает три этапа:

1. Понимание задачи, сформулированной в готовом виде учителем или определяемой самим учеником.

2. «Принятие» задачи учеником, он должен решать её для себя, она должна быть лично значима, а потому и принята к решению.

3. Связан с тем, что решение задачи должно вызывать эмоциональное переживание «лучше удовлетворения, чем досады, неудовлетворение собой и желание поставить и решать собственную задачу и так далее».

Выяснили, что величина – это особое свойство реальных объектов или явлений, её особенность заключается в том, что это свойство можно измерить, то есть назвать количество величин, которые выражают одно и тоже свойство объектов, называются величинами одного рода или однородными величинами.    Величины – длина, площадь, масса и другие обладают рядом свойств. Однородные величины можно сравнивать, складывать, вычитать, умножать и делить.

В данной главе были даны следующие определения:

а) Длиной отрезка называется положительная величина определённая для каждого отрезка так, что:

- равные отрезки имеют равные длины;

- если отрезок состоит из конечного числа отрезков, то его длина равна сумме длин этих отрезков.

б) Площадью фигуры называется неотрицательная величина, определённая для каждой фигуры, которая обладает теми же свойствами, что и длина.

в) Масса – эта такая положительная величина, которая обладает свойствами:

- масса одинакова у тел, уравновешивающих друг друга на весах;

- масса складывается, когда тела соединяются вместе: масса нескольких тел, вместе взятых равна сумме их масс. 

г) Время, в обычной жизни – это то, что отделяет одно событие от другого. В математике и физике время рассматривается как скалярная величина, так как промежутки времени обладают свойствами похожими на свойства длины, площади, массы. Их можно сравнивать, складывать, измерять.

д) Объёмом фигуры называется неотрицательная величина, определённая для каждой фигуры так, что:

- равные фигуры имеют один и тот же объём;

- если фигуры состоят из конечного числа фигур, то её объём равен сумме их объёмов.

Также в данной главе были рассмотрены основные единицы измерения данных величин.


ГЛАВА 2. Методика формирования понятия величины и её измерения у младших школьников.

Длина.

  Упражнение №1.

Ученикам предлагается сравнить «на глаз» два одинаковых отрезка, но начерчены они должны быть по-разному. Отрезки обозначены как a и b. Ученики сравнивают отрезки «на глаз» и замечают, что отрезок b длиннее, чем отрезок a. После того, как дети сделали такой вывод, учитель берёт мерку и измеряет оба отрезка. В результате измерения получается, что предложенные отрезки одинаковы по длине. После этого, учащиеся делают вывод, что не всегда «на глаз» можно определить какой отрезок (предмет) длиннее (короче) другого. Поэтому возникает необходимость в измерении.

Вопросы, которые целесообразно задавать в данной ситуации:

-как вы думаете, какой отрезок длиннее (короче)?

-почему?

-можно ли всегда доверять своему глазомеру?

-что нужно для того, чтобы избежать подобной ошибки?

Упражнение№2

Учащимся предлагается измерить отрезок тремя разными мерками. Для этого каждому ученику выдаются листочки, на которых начерчены три одинаковых отрезка (собственно А, В, С) и мерки (Iсм, 2см, 3см). Пусть длина предложенных отрезков будет 6 см. Ученики, измеряют отрезок А меркой 1см, отрезок. В - 2см, отрезок С - 3 см. Получив результат отрезок А=6 мерок, отрезок В=3 мерки, отрезок С=2 мерки, учитель задаёт вопрос: почему, измеряя три одинаковых отрезка, получаем разное численное значение. Ученики выясняют, что это произошло потому, что они при измерении использовали разные мерки. В процессе этой работы учащиеся приходят к выводу, что для изменения нужно использовать одинаковую мерку. На этом уроке можно ввести единицу измерения длины – сантиметр. Вопросы, которые целесообразно задавать:

-одинакова ли длина данных отрезков?

- как вы это определили?

-какова длина отрезка А? В? С?

-почему у одинаковых отрезков при измерении получились разные значения?

-что нужно, чтобы избежать подобной ошибки?

-для чего нужно, чтобы выбрали единую мерку?

Упражнение № 3

Учащимся предлагаются листочки с начерченным на них отрезком и модель сантиметра. Пусть длина предложенного отрезка будет 15 см. Дети получают задание измерить длину предложенного отрезка с помощью модели сантиметра. После безуспешных попыток выполнить задание, учитель выясняет почему у детей не получилось измерить отрезок. Ученики ссылаются на неудобство такого измерения. Далее учитель говорит, что для удобства и быстроты измерения длины отрезков (предметов) люди придумали измерительный прибор. Этот прибор называется линейка.

Затем предлагает измерить длину данного отрезка с помощью линейки, при этом обращая внимание детей на то, что один конец отрезка должен совпадать с нулём на линейке. В результате измерения дети приходят к выводу, что измерять с помощью линейки быстрее и удобнее, чем с помощью модели сантиметра.

Упражнение № 4

На листах А 4.предложенных детям, начерчены два отрезка: отрезок А=5 см, отрезок В=20 см. С помощью модели сантиметра детям предлагается измерить данные отрезки. При измерении отрезка В учащиеся испытывают затруднения. Тогда им предлагается измерить отрезок В с помощью модели дециметра. Учащиеся быстро выясняют длину отрезка В. Затем с помощью линейки измеряют предложенную мерку (модель дециметра). Далее учитель сообщает, что данная мерка называется дециметр. Учащиеся уже выяснили, что дециметр равен десяти сантиметрам. Вопросы, которые целесообразно задавать в данной ситуации:

- какова длина отрезка А?

- удобно ли измерять её с помощью мерки №1, (модели см)

- удобно ли измерять длину отрезка В с помощью этой же мерки? Почему?

- удобно ли измерять длину отрезка В с помощью мерки № 2 (модель дециметра)?

- какова длина этой мерки?

-  зачем используют такую мерку?

Упражнение №5

На доске начерчен отрезок - 2 метра. Ученику предлагается измерить его длину с помощью модели дециметра. Данное задание вызывает затруднение, т.к. ребёнок постоянно сбивается, не может точно определить количество уложившихся мерок. Тогда предлагается измерить длину этого отрезка с помощью модели метра. Затем метровой линейкой устанавливается, что длина предложенной мерки 100 сантиметров. Далее учитель говорит, что для измерения больших отрезков или предметов, например, ткань. используют мерку, которая называется метр. Учащиеся уже выяснили, что в одном метре сто сантиметров. Затем, укладывая в модель метра модель дециметра, выясняют, что в одном метре десять дециметров. Вопросы, которые целесообразно задавать в этой ситуации:

- удобно ли измерять предложенный отрезок с помощью дециметра? Почему?

- удобно ли измерять этот отрезок с помощью новой мерки?

- сколько сантиметров в данной мерке? дециметров?

-  для чего служит эта мерка?

Упражнение № 6.

На листочках, предложенных детям, начерчены три отрезка АВ, ОС и КМ. Их длина соответственно 2см, 1см 5мм, 7 мм. Также предлагается модель сантиметра. выполненная на миллиметровой бумаге. Учитель предлагает измерить длины данных отрезков. При измерении отрезков ОС и КМ учащиеся испытывают затруднения: длина отрезка ОС чуть больше одного сантиметра, но не два, а длина отрезка КМ чуть меньше одного сантиметра. После этого, учитель предлагает рассмотреть мерку и сообщает, что она разделена на несколько равных частей. Учащиеся выясняют, что таких частей десять. Учитель сообщает, что одна такая часть называется миллиметр, а в сантиметре таких частей десять. На доске учитель записывает: АВ - 2 см = 20 мм, ОС =15 мм, КМ=7мм. Затем ученики совместно с учителем устанавливают соответствие между миллиметром и другими изученными единицами длины (см, дм, м). Вопросы, которые целесообразно задавать в данной ситуации:

- почему вы испытали затруднения при измерении отрезков ОС и КМ?

-  для чего мы ввели новую мерку?

- зачем она нужна?

- сколько мм в см? дм? м?

Площадь.

Упражнение № 1

Учащимся предлагается для сравнения две фигуры и даётся задание выяснить площадь какой фигуры больше (меньше) площади другой фигуры. Ученики предлагают сравнить две фигуры при помощи наложения одной фигуры на другую. Выполнив это практически дети выясняют, что в данном случае одна фигура полностью не помещается в другой и выяснить какая из фигур больше (меньше) не представляется возможным. Тогда учитель предлагает перевернуть фигуры. С обратной стороны обе фигуры разделены на одинаковые квадраты. Подсчитав число квадратов в обеих фигурах, дети выясняют, что площадь первой фигуры 10 квадратиков, а площадь второй -9 квадратиков и делают вывод, что площадь фигуры не всегда можно определить «на глаз» (приложением, наложением). Для того, чтобы узнать какова площадь фигуры, её надо измерить.

Вопросы, которые целесообразно задавать в данной ситуации:

- можно ли всегда определить площадь какой фигуры больше (меньше) наложением?

- что надо сделать, чтобы сравнить площади фигур, которые не помещаются друг в друге полностью?

Упражнение №2

На доске прямоугольник. Его площадь ученикам предлагается измерить тремя разными мерками. В результате измерения учащиеся получают: соответственно 6 мерок. 12 мерок, 4 мерки. Далее учитель задаёт вопрос: почему, измеряя площадь одной и той же фигуры, мы получили разные числовые значения? Ученики делают вывод, что это произошло потому, что измеряли площадь фигуры разными мерками, поэтому, чтобы избежать подобной ошибки, площадь фигур надо наметит одной меркой.

Вопросы, которые целесообразно задавать в данной ситуации:

- какова площадь фигуры, если измерим её меркой №1?№2?№3? Почему значение площади изменилось?

- Что нужно для того, чтобы избежать подобной ошибки?

-  зачем измерять площадь фигур одной меркой?

Дети изготовляют модель квадратного сантиметра и узнают, что это единица измерения площади, называется она один квадратный сантиметр, т.е. квадрат со стороной один сантиметр.

Упражнение №3

Ученикам предлагается измерить площадь двух фигур F1 и F2, начерченных на листах. Для этого им предлагается модель квадратного сантиметра.

`   Пусть площадь фигуры F1- 8 квадратных сантиметров, а площадь фигуры F2 - 20 квадратных сантиметров. При измерении фигуры F2, ученики испытывают затруднения. Затем, для изменения фигуры F2 предлагается другая мерка квадрат со стороной один квадратный дециметр. Ученики повторяют процесс измерения и выясняют, что с помощью новой мерки измерить площадь фигур F2 легче и быстрее. Далее учитель сообщает, что для измерения площадей более крупных фигур используют мерку, которая называется один квадратный дециметр, т.е. это квадрат со стороной один дециметр. Затем модель квадратного дециметра предлагается измерить моделью квадратного сантиметра. В процессе измерения ученики выясняют, что один квадратный дециметр равен десяти квадратным сантиметрам. Вопросы, которые целесообразно задавать в данной ситуации:

- почему неудобно измерять площадь фигуры F2?

-  какой из предложенных мерок измерять площадь фигура F2 легче? Почему?

- для чего люди используют такую мерку?

- сколько квадратных сантиметров в одном квадратном дециметре?

Упражнение №4.

Предложенную ниже работу целесообразно проводить на улице или в коридоре.

Мелом вычерчивается прямоугольник площадью квадратных метров. Детям предлагается измерить площадь этой фигуры с помощью модели квадратного дециметра. У учащихся не получается выполнить задание и тогда, им предлагается: измерить площадь данной фигуры с помощью новой мерки (модели квадратного метра). Учащиеся, повторив процесс измерения новой меткой, выясняют, что с её помощью измерить площадь фигуры легче. Далее учитель сообщает, что эта метка называется квадратный метр, т.е. квадрат со стороной один метр. Эту мерку использует для измерения площадей больших фигур или участков земли и т.д. Затем предлагается моделью квадратного дециметра измерить площадь новой мерки. Выполнив процесс измерения, учащиеся устанавливают, что в одном квадратном метре десять квадратных дециметров и соответственно, сто квадратных сантиметров.

Вопросы, которые целесообразно задавать в подобной ситуации:

-почему неудобно измерять площадь этой фигуры с помощью модели квадратного дециметра?

-какой из предложенных мерок измерять площадь данной фигуры легче? Почему?

-для чего люди придумали мерку - один квадратный метр?

-сколько в квадратном метре квадратных дециметров?

Масса.

Упражнение № 1

Учащимся предлагается найти сходства и отличия у двух одинаковых кубов.

Но один куб внутри пустой, а другой заполнен песком. При сравнении дети быстро находят общие признаки (обе фигуры одинаковы по форме, цвету и размеру).

Найти отличия дети затрудняются. Один ученик вызывается к столу учителя и берет кубики в руки, выясняя при этом, что один кубик тяжёлый, а другой лёгкий. Это значит говорит учитель, что предметы различны по массе.

Далее ученики выясняют, что визуально «на глаз» массу предметов определить не возможно. Возникает необходимость в измерении.

Вопросы, которые целесообразно задавать в данной ситуации:

-в чём сходство предметов? различие предметов?

-какой из кубиков тяжелее?

-можно ли это определить не взяв их в руки?

-для чего нужно измерять массу?

Упражнение № 2

Ученикам предлагается узнать массу двух мешочков с песком: красного и синего, причём масса синего мешочка незначительно больше массы красного. Несколько учеников пытаются определить масса какого мешочка больше. Их мнения расходятся, тогда учитель говорит, что для того, чтобы определять массу предметов люди придумали измерительный прибор. Он называется весы. После этого, ученикам предлагаются весы (на этом этапе целесообразнее предложить детям весы без делений). Они взвешивают мешочки и выясняют, что масса одного из них больше и делают вывод, что для измерения массы предметов используют весы.

Вопросы, которые целесообразно задавать детям в данной ситуации:

-масса какого мешочка больше: синего или красного?

-почему вы затрудняетесь ответить на этот вопрос?

-для чего люди придумали взвешивать предметы?

-с какой целью мы используем весы?

Упражнение №3

(Данная ситуация представлена в учебнике Н.Б.Истоминой Методика обучения математике в начальных классах «М:,ЛИНКА-ПРЕСС,1997 год)

На столе учителя три предмета; гиря в I кг и два пакета, массой очень незначительно отличающейся от гири, например, 990 г, учитель предлагает детям, не пользуясь весами, ответить на вопросы: «Масса какого предмета самая маленькая? Самая большая?» Как правило, мнения учащихся расходятся, и они приходят к выводу, что для ответа на эти вопросы необходимо использовать весы. В данном случае неважно как будет решаться данная задача, самостоятельно или с помощью учителя. Важно, чтобы дети поняли, что в качестве меры можно использовать любой из предметов и здесь, как и при измерении длины, нужно договориться. Так вводится единица измерения массы - один килограмм.

 

Время.

Упражнение №1

Детям предлагается прослушать две магнитофонные записи. Причём одна из них 20 секунд, а другая 15 секунд. После прослушивания дети должны определить, какая из предложенных записей длится дольше, чем другая. Данная задача вызывает определённые затруднения, мнения детей расходятся.

Тогда учитель выясняет, что для того, чтобы выяснить продолжительность мелодий их необходимо измерить. Вопросы, которые необходимо задавать в данной ситуации:

-какая из двух мелодий длится дольше?

-можно ли это определить на слух?

-что, нужно для того, чтобы определить продолжительность мелодий.

На этом уроке можно ввести часы и единицу измерения времени - минуту.

Упражнение №1

Детям предлагается прослушать две мелодии. Одна, из них длится 1 минуту, а другая 55 секунд. После прослушивания дети должны определить какая мелодия длится дольше. Это задание вызывает затруднение, мнения детей расходятся.

Тогда учитель предлагает во время прослушивания мелодии считать сколько раз будет двигаться стрелка. В процессе этой работы дети выясняют, что при прослушивании первой мелодии стрелка двигалась 60 раз и прошла полный круг, т.е. мелодия длилась одну минуту. Вторая мелодия длилась меньше, т.к. пока она звучала стрелка двигалась 55 раз. После этого учитель сообщает детям, что каждый «шажок» стрелки это отрезок времени, который называется секунда. Стрелка, проходя полный круг- минуту - совершает 60 «шагов, т.е. в одной минуте 60 секунд.»Далее учитель сообщает, что стрелка, которой они пользовались называется секундной, а стрелка, которая меньше секундной, указывает на минуты (см. вопросы в упражнении № 1.)

Детям предлагается афиша: «Приглашаем всех учащихся школы на лекцию о правилах поведения на воде. Длится лекция 60.....»Учитель объясняет, что художник, который рисовал афишу не знал единиц времени и не написал сколько будет длится лекция. Ученики первого класса решили, что лекция будет длится 60 секунд, т.е. одну минуту, а ученики второго класса решили, что лекция будет длится 60 минут. Как вы думаете, кто из них прав ученики выясняют, что правы ученики второго класса. В процессе решения данной задачи дети делают вывод, что при измерении отрезков времени необходимо пользоваться единой мелкой. На этом уроке вводится новая единиц измерения времени - час.

 Вопросы, которые целесообразно задавать в данной ситуации:

-почему вы решили, что правы ученики второго класса?

-что нужно для того, чтобы не было таких ошибок?

-сколько минут в одном часе? сколько секунд?

Объём.

Упражнение №1

Учащимся предлагается сравнить количество воды в двух разных ёмкостях.

Одна из ёмкостей - прозрачная тарелка, а другая - вытянутая колба. В обеих ёмкостях 200 мл воды. Дети «на глаз» определяют, что в тарелке воды больше. После этого учитель говорит, что это новая величина и называется она объём. Затем предлагает перелить воду из тарелки и колбы в два одинаковых стакана. В процессе выполнения этого задания, дети выясняют, что в обеих ёмкостях воды одинаковое количество и делают вывод, что для определения объёма необходимо измерение. Вопросы, которые целесообразно задавать в данной ситуации:

- в какой ёмкости воды больше (меньше): в тарелке или колбе?

- почему вы сделали ошибочный вывод?

- что нужно для того, чтобы избежать подобной ошибки?

 На этом уроке можно ввести единицу объема - литр.

 Прежде чем предложить следующую ситуацию, необходимо провести с детьми беседу о том, что объём имеют не только тарелки, банки и др., но и некоторые геометрические фигуры, например, куб.   

Упражнение № 2

Ученикам предлагается измерить объём куба. Для этого им предлагается куб без верхней стороны и две мерки: куб со стороной один кубический дециметр и параллелепипед длина - 2 см, высота - 1 см, ширина - 1 см. Объём предложенного куба 64 см. Мерок детям предлагается много, чтобы они могли уложить их в кубе. Ученики выполняют задание и выясняют, что измеряя первой меркой (куб) они получили в результате 64, а измеряя второй мерой (параллелепипед) - 32. После этого ученики делают вывод о необходимости введения единой мерки. Вопросы, которые целесообразно задавать в данной ситуации:

- каков объём куба?

-почему у вас получились разные результаты?

-чем нужно пользоваться при измерении объёмов фигур?

На этом уроке можно ввести единицу изменения объёма - один кубический сантиметр.

Упражнение № 3

Проводится аналогично упражнению № 3 при введении понятия «площадь», т.е. детям предлагается измерить объём куба двумя мерками: моделью кубического сантиметра и моделью кубического дециметра. Объём предложенного куба 20 кубических сантиметров. Дети выясняют, что новой меркой пользоваться быстрее и удобнее. Далее вводится название и выясняется, что в одном кубическом дециметре десять кубических сантиметров.

Для того, чтобы дети различали два понятия, необходимо давать логические задачи, например, что тяжелее тонна пуха или тонна чугуна и др.

Описанные выше ситуации отвечают практически всем дидактическим принципам:

- научности: наряду с практической деятельностью учащихся на уроке преобладает теоретические знания;

- обучения быстрым темпом: благодаря лучшей усваимости материала увеличивается и темп его подачи;

- связи педагогического процесса с жизнью: ознакомление учащихся с величинами происходит с опорой на имеющийся у них жизненный опыт в результате их практической деятельности с предметами. Здесь прослеживает



Поделиться:


Последнее изменение этой страницы: 2020-03-14; просмотров: 605; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.19.211.134 (0.132 с.)