Мы поможем в написании ваших работ!
ЗНАЕТЕ ЛИ ВЫ?
|
Внутренняя операциональная архитектоника функциональной системы
Не будет преувеличением сказать, что трудность развития системного подхода вообще и "общей теории систем" Берталанфи в частности состоит именно в том, что обсуждение ведется на уровне глобальных свойств системы, так сказать обсуждение системы "черного ящика". Подавляющее большинство исследователей не делают попытки проникнуть во внутреннюю архитектонику системы и дать сравнительную оценку специфических свойств ее внутренних механизмов. При таком подходе обсуждаемая система всегда выглядит как нечто гомогенное, в котором клетки одинаковы, все компоненты равноценны и все механизмы равнозначны. В действительности же дело обстоит совсем наоборот. Функциональная система всегда гетерогенна. Она всегда состоит из определенного количества узловых механизмов, каждый из которых занимает свое собственное место и является специфическим для всего процесса формирования функциональной системы. Становится очевидным, что, не вскрыв этих своеобразных механизмов, составляющих внутреннюю операциональную архитектонику системы, мы не приблизимся к самой решающей цели системного подхода вообще - обеспечению органического единства в исследовательском процессе системного уровня функционирования с индивидуальной характеристикой каждого дробного элемента или механизма, принимающего участие в этом функционировании. Смысл системного подхода состоит именно в том, что элемент или компонент функционирования не должен пониматься как самостоятельное и независимое образование. Он должен пониматься как элемент, чьи оставшиеся степени свободы подчинены общему плану функционирования системы, направляемому получением полезного результата. Компонент должен быть органическим звеном в весьма обширной кооперации с другими компонентами системы. Естественно, что это правило относится к любому компоненту любой субсистемы, как бы элементарна она ни была. Одним из существенных и даже, пожалуй, решающих отличий теории функциональной системы от всех предлагаемых к обсуждению системных моделей является наличие в ней четко отработанной внутренней операциональной архитектоники. Такая внутренняя архитектоника, выраженная в физиологических понятиях, является непосредственным инструментом для практического применения функциональной системы в исследовательской работе, если даже она касается молекулярного уровня исследуемого объекта. Практически система может стать методологическим принципом исследования и перебросить концептуальный мост от синтетических обобщений к аналитическим деталям только в том случае, если она будет иметь четко очерченную, физиологически достоверную и логически оправданную внутреннюю архитектонику. Внутренняя архитектоника функциональной системы выражает собой дальнейшее развитие идеи взаимосодействия компонентов системы, она раскрывает ее тонкие механизмы, при помощи которых компоненты системы освобождаются от избыточных степеней свободы, чтобы установить взаимосвязь с другими компонентами па основе императивного влияния результата на всю систему. В одной из своих работ Эшби очень разумно говорит о том, что сама множественность компонентов системы и их потенциально безграничное взаимодействие должны быть упрощены в соответствии с требованиями анализа, поскольку, как мы видели на примере с площадкой с 400 лампочками, совершенно невозможно эффективно анализировать хаотические "взаимодействия" этого множества. Именно это обстоятельство заставило его говорить об упрощении и об "улучшенной логике механизма". Он выразился даже еще более радикально, говоря, что "теория систем должна строиться на методах упрощения и что она представляет собой науку упрощения" (Эшби, 1962). Однако опять-таки он не указывает самого важного: на основе какого же критерия должна быть построена "логика механизма" и должно быть произведено "упрощение множества". Теория функциональной системы решает этот вопрос четко и обоснованно. Центральным критерием упрощения множества является результат системы, который, как мы видели, предъявляет решающие требования к определенным степеням свободы компонентов системы. С точки зрения теории функциональной системы, "улучшенная логика механизма" есть не что иное, как внутренняя операциональная архитектоника системы, отвечающая на все требования тончайшего физиологического анализа механизмов системы до молекулярного уровня включительно. Ниже мы приводим узловые специфические механизмы, представляющие собой внутреннюю архитектонику системы и вместе с тем обеспечивающие объединение в одной исходной концепции и высшего синтеза и тончайшего анализа.
АФФЕРЕНТНЫЙ СИНТЕЗ
Как мы уже установили в начале раздела, для функциональной системы характерно то, что вопрос, какой результат должен быть получен, решается внутри системы и на основе ее закономерных механизмов. Это обстоятельство радикально отличает биосистему от самых сложных машинных устройств автоматической регуляции. Практически для всех машин цель поставлена за пределами машины и для нее допускается лишь некоторая способность самоорганизации в процессе получения запрограммированного не ею результата. Биосистема даже очень простой иерархии сама, па основе своих внутренних процессов, принимает решение о том, какой результат нужен в данный момент ее приспособительной деятельности. Вопрос этот решается именно в стадии афферентного синтеза. Поскольку этот процесс много раз описывался нами в различных публикациях, мы дадим здесь лишь краткую формулировку его особенностей. Прежде всего вопрос о его составе. Какие именно афференты синтезируются в этой стадии? Мы предложили четыре решающих компонента афферентного синтеза, которые должны быть подвергнуты одновременной обработке с одновременным взаимодействием на уровне отдельных нейронов: доминирующая " на данный момент мотивация, обстановочная афферентация, также соответствующая данному моменту, пусковая афферентация и, наконец, память. Основным условием афферентного синтеза является одновременная встреча всех четырех участников этой стадии функциональной системы. Микроэлектродный и микрохимический анализы и другие формы аналитического исследования нейрона в момент встречи на нем всех упомянутых выше типов возбуждений показали, что этот процесс поддерживается и облегчается рядом динамических процессов нервной системы. К ним относятся, прежде всего, восходящая активация, вызванная ориентировочно-исследовательской реакцией, как правило, сопутствующая афферентному синтезу и предшествующая принятию решения, процесс корково-подкорковой реверберации и процесс центробежного повышения возбудимости вовлеченных в афферентный синтез рецепторов. Своеобразие состоит в том, что этот синтетический процесс, если его отнести к масштабам нейрона, совершается на основе центральной закономерности интегратнвной деятельности мозга, именно на основе конвергзнции возбуждений на одном и том же нейроне. Нам хотелось бы обратить внимание на следующее: одновременность обработки всех четырех типов возбуждений в стадии афферентного синтеза основана на том, что каждый из них приобретает свои особенные физиологические свойства именно в процессе симультанной обработки. Именно здесь происходит освобождение нейрона от избыточных степенен свободы благодаря приходу к нему именно тех, а не других возбуждений. В связи с этим уместно отметить, что существующая в нейрофизиологии тенденция изучать и рассматривать такие компоненты афферентного синтеза, как Мотивация, память, стимул и т. п., в качестве отдельных, самодовлеющих проблем неверна и малоэффективна. Возьмем, например, проблему памяти. Взятая в отдельности, сама по себе, как самодовлеющая проблема, она уже показала, что может повести мысль исследователя совершенно в другую сторону. Действительно, в каком аспекте сейчас развивается проблема памяти? Подавляющее большинство исследователей проблемы памяти все внимание сосредоточивают на моменте фиксации пережитого опыта живой системы. Это, несомненно, важная сторона памяти, но совсем по-другому выглядит весь вопрос о ней, как только мы будем ее рассматривать как один из компонентов, органически включенных в проблему принятия решения. Здесь сразу же центр событий перемещается с фиксации опыта на динамическое извлечение этого опыта из молекулярных агрегатов большой системы. Этот процесс извлечения из памяти является еще более поразительным, если вспомнить, с какой легкостью он ежесекундно и безошибочно помогает принять нужное решение в конце афферентного синтеза. Обратим внимание, с какой легкостью мы извлекаем из памяти самые тончайшие нюансы нашей мысли, разговора и всего того, что было накоплено за всю нашу жизнь. Совершенно очевидно, что эта чудесная способность памяти быть готовой ежесекундно отдать то, что было накоплено за много лет и что требуется в данной стадии афферентного синтеза, не может быть изучена иначе, как на основе полного контакта и взаимодействия всех; четырех компонентов афферентного синтеза. Значительное облегчение при решении проблемы афферентного синтеза нам принесла разработка концепции об интегративной деятельности нейрона. Она дала возможность сформулировать положение, на основе которого строится динамическое участие памяти в афферентном синтезе: извлечение прошлого опыта из памяти происходит по той же нейрохимической трассе, по которой он был зафиксирован в момент приобретения опыта (П.К. Анохин, 1974). Таким образом, афферентный синтез, приводящий организм к решению вопроса, какой именно результат должен быть получен в данный момент, обеспечивает постановку цели, достижению которой и будет посвящена вся дальнейшая логика системы. Нетрудно видеть, что афферентный синтез, являющийся абсолютно необходимым этапом формирования функциональной системы, содержит все необходимое для постановки цели, которая так долго пугала исследователя-материалиста и так долго находилась в безраздельном владении идеализма. Все детали афферентного синтеза в нашей лаборатории изучаются на протяжении многих лет с помощью экспериментально-физиологических методик. Так, например, неразделимое единство пусковой и обстановочной афферентации было показано на основе опытов с стирпацией лобных отделов коры собаки и последующим изучением реакции выбора на различные условные раздражители (А.И. Шумилина). В последнее время были подробно изучены различные виды восходящих активирующих влияний, которые своеобразно помогают афферентному синтезу. Здесь прежде всего надо указать на чрезвычайное увеличение дискриминационной способности коркового нейрона к частоте импульсаций под влиянием "мотивационных" раздражений гипоталамуса (С.Н. Хаютин, 1971). Другой важный механизм, выявляющийся при раздражении лимбической системы, - это перевод нейронов из категории мономодальных в мультиконвергентную категорию (В.А. Макаров, 1970). Легко видеть, что уже только эти два механизма могут значительно повысить информационную емкость нейрона и, следовательно, вместе с другими описанными выше механизмами сделать особенно эффективной стадию афферентного синтеза. К разряду механизмов, облегчающих афферентный синтез, надо отнести также детекторные свойства периферических рецепторов и побочное вытормаживание "шумовых процессов" при прохождении афферентной информации по центральной нервной системе. Особенно подробно (до микроэлектродной и до микрохимической методик включительно) была изучена роль доминирующей мотивации в установлении синтетических взаимодействий в этой стадии на поверхности одиночного нейрона. Само собой разумеется, что возможность такого тонкого анализа отдельных процессов, составляющих систему, появилась только тогда, когда была выработана "улучшенная логика механизма", т.е. внутренняя операциональная архитектоника системы. В управленческом деле, как и в биологических системах, также следует поставить вопрос, какой результат должен быть получен системой. Иначе говоря, совокупность всех предварительных расчетов и соображений должна составить (например, в торговом деле) основу афферентного синтеза, приводящего к решению и выбору действия с наилучшим результатом. Так, например, Ханике (1969), касаясь проблемы управления, пишет: "Цель заключается в том, чтобы обеспечить принятие решений на основе систематического анализа". Насколько отчетливо именно в проблеме управления предприятиями встают вопросы о необходимости афферентного синтеза, совершенно схожие с биологическими проблемами, видно из того удивительного совпадения, которое получилось в аргументации Ханике и нашей собственной по поводу роли афферентного синтеза. Для выявления наличия широкого афферентного синтеза у человека перед принятием решения рассмотрим пример, когда пешеход переходит улицу. Перед тем как принять решение о переходе, человек должен тщательно оценить довольно большое количество компонентов этого афферентного синтеза (число машин, скорость движения, ширину улицы, свои силы и др.). Аргументируя наличие этой стадии в системной деятельности человека, Ханике также приводит именно этот пример, перечисляя все параметры, которые должны быть учтены для принятия решения о переходе.
ПРИНЯТИЕ РЕШЕНИЯ
Принятие решения - один из самых интересных моментов в развертывании системных процессов. Тот факт, что само понятие принятия решения долгое время изгонялось так называемой чистой наукой из области научных исследований, - лучшее доказательство того, что оно происходит на основе весьма комплексных процессов мозга. В настоящее время, как видно из предыдущего изложения, теория функциональной системы сделала "принятие решения" полноценным участником объективного процесса формирования системы, критического процесса, благодаря которому афферентная оценка всех условий завершается доступным исследованию механизмом. Афферентный синтез, подчиняясь доминирующей в данный момент мотивации и под коррекцией памяти, ведет такой подбор возможных степеней свободы, при котором возбуждения избирательно направляются к мышцам, совершающим нужное действие. Возникает весьма существенный для всей нашей концепции вопрос, когда и как происходит принятие решения о получении именно того, а не другого результата. Последние данные сотрудников пашей лаборатории (А.И. Шумилина, В.Б. Швырков) заставляют думать, что оценка возможных результатов при данной доминирующей мотивации происходит уже в стадии афферентного синтеза. Однако эти результаты не получаются реально, а следовательно, их оценка происходит при помощи какого-то пока не изученного нами механизма. То же, что происходит в "принятии решения", является уже результатом выбора па основе длительной оценки различных, внутренне (!) формирующихся результатов. Иначе говоря, любое принятие решения, после того как закончится афферентный синтез, является выбором наиболее подходящих степеней свободы в тех компонентах, которые должны составить рабочую часть системы. В свою очередь эти оставшиеся степени свободы дают возможность экономно осуществить именно то действие, которое должно привести к запрограммированному результату. Как происходит это освобождение от избыточных степеней свободы? Почему момент принятия решения часто имеет характер внезапной интуиции? В настоящее время мы еще не можем ответить на эти вопросы, но выработанный подход к ним дает полную гарантию того, что принятие решения в биологических системах с большой и малой иерархией является вполне анализируемым и доступным для объективной науки феноменом. Прежние опыты А.И. Шумилиной, которая производила удаление лобных отделов у собаки, находящейся в условиях активного выбора одной из сторон станка, убедительно показали, что в этот момент, т.е. в момент принятия решения, вся обрабатываемая информация интегрируется именно в области лобных отделов, откуда и идет команда к подбору наиболее оптимальных аппаратов поведения. Интересно отметить, что, являясь наиболее требовательным к объему афферентной информации, процесс принятия решения страдает в первую очередь после различных вмешательств в центральную нервную систему. Весьма доказательной иллюстрацией являются результаты опытов Gambaryan (1971). Разрушая некоторые подкорковые аппараты (бледное тело и др.), он нашел, что прежде всего длительно страдает активный выбор стороны станка, на которой должно быть сделано пищевое подкрепление. Наоборот, казалось бы, более сложный "произвольный акт" - нажатие педали для подачи корма - остается неразрушенным или мало пострадавшим. Попытаемся понять сам момент принятия вполне определенного решения с точки зрения общефизиологических закономерностей. Его механизмы станут ясными, если мы представим себе на минуту, какое количество возможных действий может сделать человек, употребляя хотя бы только один мышечный аппарат. Мы уже знаем, что вся эфферентная часть организма должна обладать свойством экстренной мобилизуемости. Малейшего изменения в распределении мышечных усилий достаточно для того, чтобы было произведено вполне целенаправленное движение конечности или целого организма. Принципиально таких возможностей движения у организма существует необозримое множество - вероятно, не меньше, чем количества комбинаций взаимодействия на площадке с 400 лампочками. Вместе с тем мы знаем, что в каждом отдельном случае, в соответствии с принятым решением, возбуждения выходят на совершенно определенные мышечные группы. Иначе говоря, происходит очень быстрое отбрасывание всех тех степеней свободы в наших движениях, которые не соответствовали бы принятому решению. Таким образом, сама проблема реализации принятого решения в физиологическом плане должна объяснить два важных вопроса: 1. Какие механизмы производят отбор нужных в данный момент степеней свободы и вытормаживают все те степени свободы па моторных нейронах и мышечных аппаратах, которые не имеют отношения к получению данного результата. 2. Где может быть преимущественная локализация этого в высшей степени конденсированного процесса, который одновременно обрабатывает на основе доминирующей мотивации всю прошедшую в мозг афферентную информацию, производит непрерывное сопоставление этих результатов с прошлым опытом и, наконец, переводит результаты этой обработки на эфферентные пути, точно соответствующие распределению возбуждений для совершения нужного акта, обеспечивающего получение нужных результатов? С постановкой этих двух вопросов мы переходим в область, абсолютно новую для нейрофизиологии и потому, естественно, совсем не разработанную. Насколько интересны те новые вопросы исследования, которые при этом возникают, показывает, например, роль доминирующей мотивации в отборе необходимой в данный момент афферентной информации на уровне коры, на ее нейронах. Микрофизиологическое исследование нейронов вентро-медиального гипоталамуса показало, что уровень их возбудимости зависит от начального возбуждения латерального ядра гипоталамуса "голодной кровью". Дозируя это возбуждение в натуральных условиях сроками голодания (1-4 дня), мы показали, что количество доминирующего возбуждения меняется на соответствующих синапсах корковых нейронов и в связи с этим значительно меняется интегрирующее влияние доминирующей мотивации на соотношение других синаптических возбуждений данных кортикальных нейронов. Эти исследования дают нам лишнее доказательство того, что системный подход радикально влияет на постановку вопроса каждого конкретного исследования. Есть основание предполагать, что этот механизм сосредоточен в наиболее интегрирующих и компактных структурах головного мозга. Однако вопрос физиологической интерпретации принятия решения, возникший благодаря системному подходу к предмету, должен быть фактически разработан заново.
|