Формирование акцептора результатов действия 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Формирование акцептора результатов действия



Аппарат акцептора результатов действия - один из самых интересных в деятельности мозга и практически так же универсален и "вездесущ", как обратная афферентация и афферентный синтез. Формирование этого механизма нарушает устоявшееся представление о поступательном ходе возбуждений по центральной нервной системе согласно рефлекторному процессу. Акцептор результатов действия на основе многостороннего механизма афферентного синтеза не является выражением последовательного развития всей цепи явлений поведенческого акта. Он "предвосхищает" афферентные свойства того результата, который должен быть получен в соответствии с принятым решением, и, следовательно, опережает ход событий в отношениях между организмом и внешним миром.
Акцептор результатов действия является весьма сложным аппаратом. По сути дела он должен сформировать какие-то тонкие нервные механизмы, которые позволяют не только прогнозировать признаки необходимого в данный момент результата, но и сличать их с параметрами реального результата, информация о которых приходит к акцептору результатов действия благодаря обратной афферентации. Именно этот аппарат дает единственную возможность организму исправить ошибку поведения или довести несовершенные поведенческие акты до совершенных. Здесь следует также подчеркнуть, что различного рода "поиски" и компенсации также могут повести к полезному результату через такого рода оценку обратной афферентации. Циркуляторное развитие этих возбуждений при "узнавании" и "поиске" может быть столь быстрым, что каждый блок этой функции, состоящей из компонентов: результат - обратная афферентация - сличение и оценка реальных результатов в акцепторе результатов действия - коррекция - новый результат и т.д., может развиться буквально в доли секунды. Особенно быстро этот процесс протекает в условиях "сканирования" и "слежения".
Факт организации этого аппарата непосредственно после принятия решения был доказан в нашей и других лабораториях как в обычном эксперименте с условными рефлексами, так и при помощи тонких электрофизиологических приемов.
Возможно, сам момент встречи опережающего комплекса возбуждений с информацией о реально полученных результатах происходит на основе каких-то весьма тонких признаков возбуждения вообще, допускающих количественное и композиционное сличения.
Одна из интересных форм сличения в акцепторе результатов действия, хотя ее автор и не был знаком с общей архитектурой функциональной системы, была недавно представлена японским ученым Suga (1964). Он изучал получение обратного, отраженного от объекта сигнала при ультразвуковой локации у летучих мышей. Оказалось, что при посылке ультразвукового поискового сигнала в пространство в мозге летучей мыши формируется комплекс из возбужденных клеток с различными латентными периодами, периодом торможения и частотной конфигурацией. Именно эти комплексы в зависимости от фазы, в которой происходит встреча их с отраженным от объекта ультразвуковым сигналом, решают вопрос о расстоянии, на котором находится преследуемый объект.
Конечно, этот аппарат оценки результата действия сравнительно простой, но он подсказывает нам, какими возможностями и параметрами нервное возбуждение решает проблему сличения. В более сложных формах результата, например при очинке карандаша, этот аппарат, включающий несколько сенсорных компонентов, является, несомненно, более сложным. Наши последние исследования по составу акцептора результатов действия как комплекса разнородных возбуждений показали, что эти средства сличения могут быть очень различны.
Что может входить в состав этого аппарата? Совершенно очевидно, что существенные признаки будущего результата динамически формируются благодаря многосторонним процессам афферентного синтеза с извлечением из памяти прошлого жизненного опыта и его результата.
Некоторые последние данные заставляют, однако, думать, что в стадии афферентного синтеза складывается несколько возможных результатов, но они не выходят на эфферентные пути и поэтому не реализуются, Решение же совершается после того, как произведен выбор наиболее адекватного результата по отношению к данной доминирующей мотивации.
Этот комплекс возбуждений - в подлинном смысле слова афферентная модель будущего результата, и именно эта модель, являясь эталоном оценки обратных афферентаций, должна направлять активность человека и животных вплоть до получения запрограммированного результата.
В последнее время были получены дополнительные сведения о том, что в этот нервный комплекс, обладающий высокой степенью мультикоп-вергентпого взаимодействия, приходит еще одно возбуждение, совершенно иной, не афферентной, а уже эфферентной природы. Речь идет о коллатеральных ответвлениях пирамидного тракта, отводящих ко многим межуточным нейронам "копии" тех эфферентных посылок, которые выходят на пирамидный тракт. Интересно, что эти эфферентные возбуждения конвергируют на те же межуточные нейроны сенсомоторной области, куда поступают и все те афферентные возбуждения, которые могут составить параметры реального результата.
Таким образом, момент принятия решения и начала выхода рабочих эфферентных возбуждений из мозга сопровождается формированием обширного комплекса возбуждений, состоящего из афферентных признаков будущего результата и из коллатеральной копии эфферентных возбуждений, вышедших на периферию по пирамидному тракту к рабочим аппаратам. В зависимости от интервала между постановкой цели и ее реализацией к этому же комплексу возбуждений через определенное время приходят возбуждения и от реальных параметров полученного результата. Самый процесс оценки полученного реального результата осуществляется из сличения прогнозированных параметров и параметров реально полученного результата. Именно здесь, в этом пункте, осуществляется таинство оценки полученного результата, которое, как мы видели на примере с летучей мышью, производится специальным динамически формирующимся аппаратом. Оценка же и ее результат определяют дальнейшее поведение организма. Если результат соответствует прогнозированному, то организм переходит к следующему этапу поведенческого континуума.
Если же результат не соответствует прогнозу, то в аппарате сличения возникает рассогласование, активирующее ориентировочно-исследовательскую реакцию, которая, поднимая ассоциативные возможности мозга на высокий уровень, тем самым помогает активному подбору дополнительной информации. Все эти процессы поведения акцептора действия достаточно хорошо изучены в нашей лаборатории.
Так, например, было показано, что в момент выхода из коры головного мозга пирамидное возбуждение отдает копию эфферентного возбуждения не только в комплексы оценки результата, т.е. в кору мозга, но и в ретикулярную формацию. Ретикулярная формация в обратном кортико-петальным направлении имеет возможность оказать дополнительное энергетическое воздействие на те циркулярные возбуждения ("круги ожидания"), которые должны удержать свою активность до момента прихода информации о получении полезного результата. Как мы знаем, в некоторых случаях комплекс акцептора результатов действия должен очень долго быть в напряженном состоянии, прежде чем будет получен реальный запрограммированный результат.

ЗАКЛЮЧЕНИЕ

Большая часть раздела посвящена тем разграничительным линиям, которые отделяют общее движение за системный подход от разработанной в нашей лаборатории теории функциональной системы, имеющей и иное начало, и иной путь отработки принципиальных позиций и понятий.
В одной из своих работ Берталанфи пишет, что идея "организменного", или "целостного", подхода родилась у него очень рано, кажется, в 1937 г., однако интеллектуальный климат того времени не был подходящим для восприятия "организменной" идеи, которую он предложил. Действительно, интеллектуальный климат того времени был воспитан па подражании законам физики и механики, и потому считалось научным только то, что могло быть переведено на принципы и понятия этих наук.
И только в 1950 г. Берталанфи решился сделать официальные шаги в защиту своей идеи, ибо в то время, т.е. в послевоенные годы, резко изменился сам интеллектуальный климат. Весьма быстро и настоятельно проявился интерес к абстрактным формулам, моделям, синтетическим понятиям и вообще к интердисциплинарным взаимоотношениям между учеными, и только в этот период стало возможным говорить об общей теории систем.
Теория функциональной системы претерпела также немало изменений с момента ее первой формулировки, однако условия ее возникновения и самые первые шаги в ее развитии принципиально отличались от путей развития общей теории систем. Как концепция она зародилась примерно в 1932-1933 гг. и была сформулирована в достаточно развитой форме уже в 1935 г. в сборнике "Проблема центра и периферии в физиологии нервной деятельности".
Однако в первых же формулировках функциональная система как интегративное образование организма включала все те компоненты, которые характерны для нее и сейчас, в том числе и обратную, или санкционирующую, афферентацию. В отличие от общей теории систем, которая до сих пор пребывает в стадии исканий конкретных и полезных путей, теория функциональной системы в первые же годы после ее формулировки явилась для нашей лаборатории толчком к бурному развитию именно конкретной исследовательской работы, которая нашла в функциональной системе совершенно очевидный конструктивный стимул к формулировке новых задач исследования.
Эта особенность теории функциональной системы как конкретной конструктивной теории резко отличает ее от судьбы общей теории систем, которая даже к настоящему времени практически еще не имеет связи с конкретной исследовательской работой.
Достаточно указать, что уже в 1937 г. была опубликована кардинальная для наших исследований работа "Функциональная система как основа интеграции нервных процессов в эмбриогенезе". Фактически это было зарождением той эволюционной концепции, которая в 1945 г. была сформулирована как теория системогенеза.
Очень часто задают вопрос, к каким принципиальным обобщениям привели исследования, проведенные на основе теории функциональной системы. Системогенез может служить самым демонстративным примером конструктивной продуктивности теории функциональной системы как методологического инструмента, помогающего поставить новые вопросы исследования.
Системогенез приводит к существенным изменениям имевшихся представлений о путях эмбрионального развития. Это стало возможным только потому, что теория функциональной системы оказалась конструктивным принципом, подсказывающим положительно в каждой области новый подход, новые трактовки и новые формы экспериментирования. Мы не можем здесь перечислять все те направления исследований в различных областях биологии и физиологии, которые получили совершенно новое освещение при использовании теории функциональной системы как рабочего принципа в повседневном исследовании.
Казалось бы, общая теория систем в соответствии с ее весьма радикальными и даже эволюционными стремлениями в борьбе с механистическим аналитизмом должна была бы вызвать немедленное преобразование самой логики научного исследования и, несомненно, приобрести всеобщую симпатию реально мыслящих ученых. Однако этого не произошло.
Почему же этого не случалось?
В этом разделе мы пытались выявить причины этого парадоксального явления. Нам кажется, ясным, что имеются две причины того ничтожного результата, который был получен при обсуждении "общей теории систем".
Первая состоит в том, что авторы ее пошли по неправильному пути как в поисках понятия системы, так и в общей тактике ее разработки.
Как можно было видеть, при всякой попытке сформулировать само понятие системы, т.е. дать принципиальное кредо этому новому интересному направлению, положительно все исследователи попадают в заколдованный круг традиционных понятий. Здесь непрерывно цитируются "целостность", "организменность", "взаимодействия", "организованная сложность", "упорядоченное множество" и другие подобные термины, которые становятся даже центральными критериями понятия системы. Ясно, что все эти термины по самой своей сути являются лишь вариациями понятия целостности. Именно поэтому, не выходя за пределы понятийного поля целостности, все эти определения не дают какого-либо существенного скачка как в понимании системы, так и в конкретной разработке ее.
Между тем главный смысл системного подхода состоит именно в том, что любая деталь наблюдения или экспериментирования должна быть неизбежно вписана в какой-то из узловых механизмов внутренней архитектоники системы. Практически никакая новая научная тема не могла бы быть сформулирована вне конкретной внутренней архитектоники системы, где эта тема только и может получить широкий познавательный смысл. Точно так же и трактовка полученных результатов даст наибольший эффект, если она будет построена на основе системных механизмов.
Вторая причина состоит в том, что интеллектуальный климат для принятия системного воззрения действительно изменился. Однако подавляющее большинство ученых с большим трудом отказываются от устоявшихся традиций рассматривать все научное накопление в аналитическом аспекте. Такой переход - не простая перемена названий и выражений, как поначалу думали некоторые исследователи; он требует радикального изменения самих принципов подхода к элементарным процессам и общей тактике исследования.
Действительно, для исследователя, имеющего в руках теорию функциональной системы как методологический инструмент экспериментирования, не может быть "возбуждения вообще", "афферентации вообще", "мотивации вообще" и даже "памяти вообще", Конструктивная роль этих привычных понятий выявляется благодаря их положению в том или ином качественно своеобразном механизме внутренней архитектоники функциональной системы.
Возьмем для примера зрительную афферентацию. Она обычно определяется как сенсорная модальность, и с точки зрения этой аналитической характеристики специфической чертой этой афферентации будет именно ее оптический характер. Но так ли обстоит дело, если оценивать зрительную афферентацию по ее месту в архитектонике функциональной системы?
Зрительная афферентация может быть "пусковой афферентацией", как это, например, наблюдается в случае условного зрительного стимула. Но та же зрительная афферентация в других условиях может составлять и обстановочную афферентацию, определяющую совсем другой механизм системы - предпусковую интеграцию нервных процессов.
И даже больше того, зрительная афферептация может иметь еще третью и совершенно иную функциональную значимость: она может участвовать в оценке полученного системой результата. Таким образом, сформулировав внутреннюю операциональную архитектонику системы, мы тем самым изменили подход к привычным для нас физиологическим понятиям и процессам.
Еще более заметной становится роль функциональной системы, когда надо, так сказать, "анатомировать" какое-то сложное явление в работе мозга животных или человека. Так, например, оценка изменения психической деятельности человека после операции на мозге производится обычно при помощи стандартных тестов, а в последние годы - при помощи оценки различных электрофизиологических показателей в работе мозга (ЭЭГ, вызванного потенциала, активности нейронов).
Функциональная система вносит определенный порядок и логическую последовательность в эту оценку. Можно задать вопрос, изменился ли афферентный синтез у данного больного при выработке определенного решения. Если он изменился, то больной не может принять адекватного решения. Тогда сейчас же возникает следующий вопрос: какой из компонентов и какой из нейродинамических процессов, определяющих успех афферентного синтеза, является нарушенным. Но мы знаем, что может оказаться ненарушенным ни один из компонентов афферентного синтеза и больной принимает вполне адекватное решение и выполняет соответствующее движение. Однако у этих больных может быть нарушен очень важный завершающий механизм системы: оценка результатов действия в акцепторе результатов действия. В этом случае мы видим, что, правильно выполняя инструкцию, больной не может остановиться на правильно выполненном результате и продолжает его "выполнять" повторно. Физиологически это значит, что больной не может оборвать действие при правильно полученном результате только потому, что аппарат сличения и, следовательно, торможения дальнейшего повторения оказывается неполноценным (систематические исследования А.Р. Лурия).
Можно назвать многие другие области научного знания, которые получили с применением теории функциональной системы иное и более конструктивное решение, чем при обычном подходе. Так, например, в корне изменилась расшифровка компенсаторного процесса при восстановлении нарушенных функций, более глубоко понят генез гипертензивных состояний вообще и, в частности, гипертонической болезни, изменилась расшифровка понятий заболевания и выздоровления и т.д. Практически все формы нарушений и нормальные функции организма значительно более легко расшифровываются с точки зрения теории функциональной системы, чем при обычном подходе. И здесь, конечно, на первом плане стоит расшифровка самого поведения животного и человека. Каждый поведенческий акт, приносящий какой-то результат, большой или малый, неизбежно формируется по принципу функциональной системы.
И, наконец, решительно изменилось понимание онтогенетического развития функций и механизмов отбора на протяжении филогенеза животных.
Приведенные выше примеры являются далеко не единственными, и заметный практический успех во всех этих случаях делает особенно необходимой глубокую и всестороннюю разработку теоретических основ функциональной системы.
Обратимся к вопросу о развитии системного подхода в Советском Союзе. Нам кажется, что попытки популяризировать системный подход как новую форму трактовки и вообще подхода к научным фактам весьма полезны. Мы должны воооружить нашу научно-исследовательскую молодежь этим методом и дать ей возможность работать в ускоренном темпе, с более рациональным исходом. Однако надо отметить, что публикации последнего года, относящиеся к этой проблеме, весьма мало сдвигают проблему системного подхода именно в сторону конструктивных методов исследования. Виной этому, как мы уже отмечали, излишнее теоретизирование конкретных биологических, машинных или общественных систем. Общая теория систем может быть интересна исследователям в области конкретных наук только в одном плане, именно в обогащении приемов и подходов к конкретному научному исследованию. В познавательном же отношении максимальный интерес и максимальное внимание должны заслужить те концепции, гипотезы и теории, которые показали совершенно очевидный конструктивный эффект в конкретном научном исследовании.
Можно только вкратце отметить важнейшие обобщения, которые нами были разработаны с помощью общей теории функциональных систем, обобщения, которые не могли быть получены иначе. Прежде всего, это - концепция системогенеза, которая сейчас помогла понять основной закон эмбрионального созревания функций, обеспечивающих выживание новорожденного (П.К. Анохин, 1937, 1948, 1964, 1968).
Концепция системогенеза по своей сути вступает в противоречие с общепринятым понятием органогенеза и дает реальное объяснение многому, что не находило до этого достаточно четкой расшифровки. Многочисленные работы наших сотрудников, начиная с 1932 г., охватывают эмбриогенез животных самых разнообразных видов, включая и изучение живых плодов (рыб, амфибий, птиц, млекопитающих, человека) (Я.А. Милягин, К.В. Шулейкина, Е.Л. Голубева и др.).
Особенно интересно подчеркнуть, что приложение новой концепции - системогенеза - к онтогенетическому развитию животных разных видов дало возможность по-новому подойти к некоторым нерешенным проблемам теории естественного отбора и "биогенетического закона" Мюллера-Геккеля (Ф.А. Ата-Мурадова, 1970).
Эта широкая перспектива приложения системогепеза к раскрытию некоторых сторон фундаментальных проблем биологии сделала эту концепцию одним из отправных пунктов для построения теоретической биологии (П.К. Анохин, 1970).
Однако все сказанное выше о системогенезе касается целиком той стадии созревания плода, когда отдельные фрагменты функциональной системы (мышцы, нервные центры, кости и др.) закладываются раздельно и развиваются, так сказать, навстречу друг другу до момента их функциональной консолидации. Последняя обычно происходит за несколько дней или недель до рождения, и к моменту рождения система готова функционировать и обеспечить новорожденному выживание.
Рано или поздно должен возникнуть вопрос о том, какие факторы в раннем эмбриогенезе направляют возникновение и развитие так гармонически сочетающихся впоследствии компонентов системы. Этот вопрос подвел нас вплотную к закономерностям общей генетики, ибо только она может помочь решить кардинальный вопрос развития: как закодированы функциональные системы в геномных организациях и какой фактор в дальнейшем дирижирует таким синхронным объединением всех компонентов функциональной системы (гетерохрония в закладках компонентов и синхронность в консолидации к моменту рождения).
Для решения этих вопросов в настоящее время мы вступили в рабочий контакт с Институтом общей генетики АН СССР и надеемся, что новый вопрос о генетике конкретных функциональных систем организма будет в какой-то степени освещен.
Другим значительным обобщением, вытекающим из физиологической архитектоники функциональной системы, является формулировка интегративной деятельности нейрона, построенная па совершенно иных основаниях, чем это принято в современной нейрофизиологии.
Эта новая концепция возникла как следствие тонкого анализа механизмов афферентного синтеза, являющегося аванпостным узловым механизмом в развертывании функциональной системы.
В самом деле, суть афферентного синтеза состоит в том, что процессы возбуждения различного функционального смысла и различного пространственного рецепторного происхождения должны быть неминуемо обработаны совместно и часто одновременно.
Возникает критический вопрос, где может быть организована эта "встреча" возбуждений, составляющих афферентный синтез функциональной системы.
Ответ может быть только один: такая встреча может произойти на одном и том же нейроне, сколько бы ни было переключений и обогащений этих возбуждений на пути к коре головного мозга. Отсюда возникла целая серия работ, которая привела вначале к формулировке идеи о гетерохимическом характере субсинаптических образований и новой концепции - представление об интегративной деятельности нейрона (П.К. Анохин, 1974).
Сейчас можно лишь перечислить те новые направления, которые возникли у нас в лаборатории и которые, как правило, повели мысль по новому пути.
Совсем другой аспект возник в объяснении природы вызванного потенциала, и, что особенно важно, он перестал быть только электрическим феноменом с изменяемыми "параметрами": амплитудой, частотой, длительностью латентного периода и др. Благодаря системному подходу вызванный потенциал стал инструментом нейрофизиологического анализа субкортикальных взаимодействий, а вместе с тем дал возможность сделать оценку восходящих возбуждений этих подкорковых образований (Ф.А. Ата-Мурадова). Можно назвать области физиологии, которые получили от общей теории функциональных систем новое направление и в объяснении и в разработке. Сюда относятся компенсация нарушенных функций, гипертоническая болезнь, эмоциональные стрессы и т.д.
Если к этому прибавить использование теории функциональных систем педагогами, медиками, музыкантами и многими другими специалистами, то можно достаточно уверенно утверждать, что в общей теории функциональных систем были найдены универсальные черты функционирования, изоморфные для огромного количества объектов, относящихся к различным классам явлений. Это обстоятельство полностью удовлетворяет тем требованиям, которые мы предъявили в самом начале этой статьи к теории систем вообще и общей теории функциональных систем в частности.

 



Поделиться:


Последнее изменение этой страницы: 2019-04-26; просмотров: 826; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.17.184.90 (0.007 с.)