![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Прилади для вимірювання швидкості потоку
Для вимірювання гідродинамічних параметрів потоку рідини - місцевої швидкості в трубопроводах використовують гідродинамічні трубки і термоелектричні анемометри (термоанемометри). Гідродинамічні трубки
Рисунок 6. 1 Труба повного і стиснутого напору Якщо в потік рідини помістити вигнуту під кутом трубку – б, спрямував один з її кінців назустріч потоку і розташував вхідний отвір у заданій мірній точці А, а інший кінець відкрити до атмосфери, то в такій трубці (трубці повного напору) рідина підніметься на деяку висоту
де
Тиск
звідкіля швидкість визначається за формулою:
Рисунок 6. 2 Улаштування, габаритні і з’єднувальні розміри гідродинамічної трубки: 1 – циліндр; 2 – державка; 3 – осьовий канал; 4 – трубка повного напору; 5 – штуцер; 6 – канавка; 7 – кожух; 8 – прорізі; 9 – трубка статистичного напору; 10 штуцер Головною частиною гідродинамічної трубки є вимірювальний циліндр 1, якій закріплений на державці 2. Носок циліндру має напівсферичну форму. Приймальником повного тиску Для приймання статистичного тиску До штуцерів 5 і 10 підключений диференціальний манометр для вимірювання різниці повного і статистичного видів тиску.
Внаслідок того, що приймальні отвори трубок спів ставити неможливо вимірювання тисків
Рисунок 6. 3 Схема встановлення гідродинамічної трубки Для визначення сумарних похибок до розрахункової формули вводять поправочний коефіцієнт
Величина коефіцієнта
Таким чином, поправочний коефіцієнт є функцією від значення числа Рейнольдса: Випадкові похибки вимірювання обумовлені неточностями при визначені величини коефіцієнту
де Гідродинамічні трубки використовують для вимірювання швидкостей більше 1 м / с. При менших швидкостях вимірювання проводити трудно, внаслідок того що приходиться вимірювати і визначати малі перепади тиску. Для отримання більш достовірних значень швидкості яка вимірюється гідродинамічною трубкою, останню необхідно встановити в потоці таким чином щоб плоскість приймальника повного напору була розташована нормально (перпендикулярно) до напрямку руху швидкості що вимірюється (рис. 6. 3). Таке встановлення відповідає максимальному значенню перепаду тиску
Циліндрична трубка У тих випадках, коли необхідно крім швидкості потоку визначити також його напрямок, використовують трубки, які є чуйними до відхилень (скосів) параметрів потоку. Такою трубкою для вимірювання швидкості в плоских потоках є циліндрична трубка. Циліндрична трубка (рис. 6. 4) представляє собою циліндр, на бокові поверхні якого виконано три отвори (1, 2 і 3), які з’єднані зі штуцерами приладу завдяки трубкам, розташованих в середині циліндру. Центральний отвір є приймальним повного тиску. Бокові отвори розташовані симетрично по відношенню до центрального; з їх допомогою визначається напрям потоку. Трубка кріпиться в поворотному координатнику і розташовується таким чином щоб площина центрів отворів співпадала с площиною (напрямкам) течії. Обертанням трубки відносно повздовжньої осі досягається положення, при якому перепад тиску в бокових отворах стане дорівнювати нулю. Для наглядом за перепадом тиску штуцера 2 і 3 приєднують до диференціального манометру. В указаному положенні центральний отвір 1 нормально (перпендикулярно) розташований до швидкості потоку. За отриманими значеннями різниці тиску в середньому і боковому отворах визначають швидкість потоку за формулою:
Величина коефіцієнту Рисунок 6. 4 Циліндрична гідродинамічна трубка: 1 – отвір центральний; 2, 3 – отвори бокові Для вимірювання напрямку і величин швидкостей в просторових потоках використовують шарові трубки, які мають центральний отвір для приймання повного тиску і чотири бокових отвори 1 – 4 для визначення напрямку потоку (рис. 6. 5) Рисунок 6. 5 Шарова гідродинамічна трубка: 1, 2, 3, 4 – отвори; 5 – отвір центральний Термоелектричні анемометри Принцип вимірювання швидкості руху рідини термоелектричним анемометром оснований на змінювані електричного опору проволоки при зміні температури. Вимірювання швидкості є можливим двома способами: при першому способі температура проволоки за допомогою опору що регулюється підтримується постійною і вимірюється потужність нагрівача якій розміщує втрату тепла; при другому способі величина потужності нагрівача підтримується постійною і вимірюється температура проволоки. Термоанемометр (рис. 6. 6) являє собою розташовану в потоці рідини проволоку 1, яка виготовлена із інертного матеріалу (платини, вольфраму, нікелю), що припаяна двома кінцями до двох електродів 2, закріплених в державці 3, через котру пропускається електричний струм. Проволока поміщується в потоці і нагрівається електричним струмом. протік, що обтікає проволоку, охолоджує її; електричний опір проволоки, при цьому, змінюється на деяку величину в залежності від швидкості потоку. фіксуючи ці зміни за допомогою відповідних електричних схем, можливо визначити величину місцевої швидкості потоку, яка розташовано нормально (перпендикулярно) до проволоки. Можливі два варіанти електричних вимірювальних схем з використанням термоанемометру з постійною силою струму і з постійними опором.
Рисунок 6. 6 Термоелектричний манометр: 1 – проволока; 2 – електроди; 3 – державка В першому випадку (рис. 6. 7) проволоку включають в електричну мережу послідовно разом з батареєю живлення і реостатом Рисунок 6. 7 Схема електричної мережі та кривої для тарування, яка працює за методом постійної сили струму: У другому випадку (рис. 6. 8) проволоку включають в одне з пліч моста Уінстона. Міст балансується при деякій величині швидкості. Зміна швидкості викликає розбаланс мосту, внаслідок зміни опору проволоки. для встановлення балансу температуру проволоки звертають до перш початкового значення шляхом зміни допоміжного опору Рисунок 6. 8 Схема електричної мережі та кривої тарування, яка працює за методом постійного опору: Співвідношення між виміряною величиною (показаннями термоанемометра) і швидкістю потоку при любому варіанту електричної схеми встановлюється попереднім таруванням Перевагами термоанемометрів є малі габаритні розміри, мала інерційність і значна чуйність. У зв’язку з чим термоанемометри застосовуються при вимірюванні малих швидкостей, швидкостей поблизу твердих стінок, перемінних у часі швидкостей, у тих випадках, коли вимірювання іншими способами, вимірювання яких гідродинамічною трубкою, пов’язано може призвести до значних похибок. Особливого значення набуває використання термоанемометрів при вимірюванні турбулентних пульсацій, які головними приладами для проведення цих вимірювань.
|
|||||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 870; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.206.12.157 (0.014 с.) |