Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Балансировочные режимы и манёвры

Поиск

Теперь вернёмся к замкнутым системам. Устойчиво управляемая система может находиться либо в балансировочном режиме, либо в режиме манёвра. Один и тот же, реально протекающий режим может быть интерпретирован и как балансировочный, если соотноситься с одним вектором целей, и как режим манёвра, если соотноситься с другим вектором целей.

В векторе целей балансировочного режима контрольные параметры неизменны во времени. В реальном устойчивом балансировочном режиме вектор состояния колеблется относительно неизменного положения в подпространстве контрольных параметров, а свободные параметры могут при этом изменяться по-всякому.

Понятие «балансировочный режим» несколько сродни понятию «равновесие», но шире его, поскольку обыденное сознание воспринимает «равновесие» статично — как неподвижную неизменность во времени. В балансировочном же режиме во времени неизменен процесс колебаний системы относительно точки «равновесия», координаты которой неизменны во времени: система проходит через неё, но не может пребывать в ней, хотя бы потому, что отклонения от неё — ниже порога чувствительности средств измерения или управление негибко, обладает конечным быстродействием и не может вовремя остановить и зафиксировать объект в точке равновесия.

Случай, когда вектор целей изменяется в процессе управления, будучи функцией времени либо функцией матрицы возможностей течения процесса управления и субъективно избранной алгоритмики управления процессом, о чём речь шла в разделе 6.5, — является манёвром. В векторе целей режима манёвра изменяется хотя бы один из контрольных параметров. При рассмотрении реального процесса устойчивого манёвра в подпространстве контрольных параметров вектор состояния отслеживает с некоторой ошибкой управления изменение вектора целей (содержащего только контрольные параметры). На свободные параметры, как и в случае балансировочного режима, ограничения не накладываются.

Режим маневрирования, в котором производные по времени контрольных изменяющихся параметров постоянны (в пределах допустимой ошибки управления), называется установившимся манёвром. Установившийся манёвр сам является балансировочным режимом, из вектора целей которого исключены изменяющиеся в процессе манёвра контрольные параметры.

Если идти от реально протекающего процесса управления и строить по предположению (т.е. гипотетически) вектор целей субъекта, реально управляющего процессом (это называется «идентификация» вектора целей), то один и тот же режим можно интерпретировать в качестве балансировочного режима или устойчивого колебательного манёвра. Так, при отнесении к вектору целей только параметров, колеблющихся относительно средних значений (в зависимости от ограничений на ошибки управления), режим интерпретируется как балансировочный режим; при отнесении к вектору целей хотя бы одного из произвольно меняющихся параметров, режим интерпретируется как манёвр.

Точно так же один и тот же режим можно воспринимать как устойчивый, исходя из одних ограничений на вектор ошибки; и как неустойчивый, исходя из более строгих ограничений на вектор ошибки; в этом предложении хорошо видно проявление возможности троякого понимания устойчивости: 1) по ограниченности колебательного процесса отклонений от некоего идеального режима, 2) по убыванию отклонений после снятия возмущающего воздействия и 3) по предсказуемости.

Простейший пример балансировочного режима — езда на автомобиле по прямой дороге с постоянной скоростью. Все стрелочки на приборной панели, кроме расхода бензина, подрагивают около установившихся положений; но рулём всё же «шевелить» надо, поскольку неровности дороги, боковой ветер, разное давление в шинах, люфты в подвесках и рулевом приводе норовят увести автомобиль в сторону.

Манёвры в свою очередь разделяются на слабые и сильные. Это разделение не отражает эффективности манёвра. Понятие слабого манёвра связано с балансировочными режимами. Перевод системы из одного балансировочного режима в другой балансировочный режим — это один из видов манёвра. Некоторые замкнутые системы обладают таким свойством, что, если этот перевод осуществлять достаточно медленно, то вектор состояния системы в процессе манёвра не будет сильно отличаться от вектора состояния в исходном и (или) конечном балансировочном режиме за исключением изменяющихся в ходе манёвра контрольных параметров и некоторых свободных параметров, информационно связанных с контрольными.

Если на корабле положить руль на борт на 3 — 4 градуса, то корабль начнёт описывать круг очень большого диаметра и будет происходить изменение угла курса. Если это делается вне видимости берегов и в пасмурную погоду, то большинство пассажиров даже не заметят манёвра изменения курса. Если же на полном ходу быстроходного корабля (узлов[239] 25 — 30) резко положить руль на борт градусов на 20 — 30, то палуба в процессе перекладки руля дёрнется под ногами в сторону, обратную направлению перекладки руля; потом начнётся вполне ощутимое вестибулярным аппаратом человека изменение курса, сопровождающееся вполне видимым креном до 10 и более градусов.

Хотя в обоих случаях изменение курса может быть одинаковым, гидродинамические характеристики корабля в первом случае слабого манёвра не будут сильно отличаться от режима прямолинейного движения; во втором случае, когда корабль начнёт входить в циркуляцию диаметром не более 4 — 5 длин корпуса, — будет падать скорость хода, появится значительная по величине поперечная составляющая скорости обтекания корпуса и крен, а общая картина обтекания корпуса и гидродинамические характеристики будут качественно отличаться от имевших место при прямолинейном движении или слабых манёврах.

Разделение манёвров на сильные и слабые в ряде случаев позволяет существенно упростить моделирование поведения замкнутой системы в процессе слабого маневрирования без потери качества результатов моделирования. Поскольку выбор меры качества всегда субъективен, то и разделение манёвров на сильные и слабые определяется субъективизмом в оценке качества моделирования и управления. Но, если такое разделение возможно, то слабому маневру можно подыскать аналогичный ему (в ранее указанном смысле) балансировочный режим.

Понятие о теориях подобия

В практической деятельности — в создании новой техники, в организации управления теми или иными процессами — типичны ситуации, в которых по параметрам какой-то одной замкнутой системы надо судить о процессах и параметрах какой-то другой замкнутой системы, которая от первой может отличаться:

· либо своими размерами при однокачественности природы обеих систем (т.е. при однокачественности физических носителей процессов в обеих системах и во внешней среде),

· либо природой.

И то и другое нуждается в пояснении.

Что касается различий однокачественных по своей природе систем, то жизнь полна так называемых «масштабных эффектов».

Масштабные эффекты проявляются в том, что при изменении всех или только некоторых размеров однокачественных по своей природе систем — значения параметров, характеризующих процессы в самой системе и во взаимодействии её со средой, изменяются не пропорционально масштабу изменения соответствующих размеров исходной системы.

При этом изменение исходных размеров системы может сопровождаться изменением каких-то параметров, характеризующих поведение новой системы, как в большую, так и в меньшую сторону. В некоторых случаях плавный переход по шкале масштаба к иным размерам системы может сопровождаться ступенчатым увеличением или уменьшением параметров, характеризующих её поведение. В других случаях какие-то параметры, характеризующие поведение системы, оказываются безразличными к изменению масштаба по отношению к исходным размерам. Всё это в природе обусловлено тем, что подавляющее большинство параметров, которыми характеризуется система и её поведение, обусловлены не одним, а множеством факторов (т.е. в математических моделях большинство параметров — функции не одного, а многих аргументов, причём функции нелинейные), каждый из которых по разному влияет на изменение характеристических параметров системы при переходе к иному масштабу.

Наличие масштабных эффектов в жизни при оценке однокачественных систем и процессов, протекающих в них и с ними связанных внешних процессов, приводит к вопросу о том: Как пересчитать характеристики одной системы, процессов в ней и с нею связанных внешних процессов к масштабу другой системы, обладающей иными размерами, для того, чтобы можно было судить о достоинствах и недостатках, о соответствии каждой из систем задачам, на неё возлагаемым, о качестве управления (решения) этих задач каждой из сопоставляемых друг с другом систем?

Нахождение ответа на этот вопрос в каждой прикладной отрасли деятельности, в которой он встаёт, — одна из задач соответствующей теории подобия.

Но это — не единственная задача теории подобия. Например, известно, что одними и теми же математическими моделями с приемлемой для практики точностью могут быть описаны процессы, имеющие разную природу. В терминологии триединства материи-информации-ме­ры это означает, что процессы, аналогичные друг другу по своим информационно-алгорит­ми­ческим характеристикам, опираются на разные по своей природе материальные носители.

При этом оказывается, что хотя люди могут построить математические модели тех или иных процессов, но достигнутый уровень развития математики и вычислительных средств позволяет решить далеко не все задачи, которые можно поставить. Тем не менее, свойство информационно-алго­рит­ми­чес­кой аналогичности процессов, протекающих на разных материальных носителях, в случаях, когда выявлена такого рода аналогичность, позволяет не решать задачи методами математики или путём экспериментирования на моделях, идентичных по своему материальному носителю интересующему нас объекту, а построить модель-аналог на основе иных материальных носителей и решать задачи на её основе.

В 1940‑е — 1950‑е гг. этот подход в истории развития техники выразился в создании так называемых «аналоговых вычислительных машин», которые однако ничего не вычисляли, а моделировали на основе протекающих в них процессов, какие-то иные процессы.

Так было выявлено, что дифференциальные уравнения, описывающие динамику самолёта в полёте, могут быть идентичны уравнениям, описывающим процессы в электронных схемах. В тот период времени не было вычислительных средств для того, чтобы решать такие математические задачи с приемлемой для практики точностью, но была возможность построения электронных схем, процессы в которых по своим информационно-алгоритмическим характеристикам были аналогичны параметрам, характеризующим динамику самолёта в полёте. И многие задачи по обеспечению желательной управляемости летательных аппаратов в ходе проектирования новой авиационной техники были решены на основе создания и варьирования параметров динамически подобных летательным аппаратам электронных схем, на которых и проводились эксперименты по моделированию управляемости будущих летательных аппаратов.

Соответственно тому, что показано на этом примере, вторая задача построения теорий подобия — определять, какие процессы, разнокачественные по природе их материальных носителей, могут быть уподоблены друг другу в аспекте информационно-алгоритмической аналогичности, и соответственно — как соотнести друг с другом реальные параметры, характеризующие физически различные процессы, и значения этих параметров, свойственные модели и объекту.

Т.е. теория подобия — не некий атрибут ДОТУ, обладающий универсальностью своего применения в решении любых практических задач, а один из возможных подразделов всякой прикладной отрасли Науки. Теорий подобия, ориентированных на решение проблем соответствующих отраслей практической деятельности, в научной субкультуре человечества может быть множество — по числу отраслей, в которых востребованы решения задач теории подобия.

Благодаря тому, что в авиации и судостроении развиты соответствующие потребностям этих отраслей теории подобия, в целом успешно решаются задачи выбора и оптимизации аэро- и гидродинамической компоновки летательных аппаратов и кораблей, выявляются и разрешаются проблемы обеспечения их прочности в процессе эксплуатации.

Тем не менее, есть и некоторые общие принципы, которые выражаются в теориях подобия, развитых в составе прикладных отраслей науки, включая достаточно общую теорию управления в её приложениях.

Поскольку понятие о времени и его измерение связано с выбором эталонной частоты, то в качестве эталонных частот могут быть взяты и собственные частоты колебаний объектов управления, замкнутых систем, процессов взаимодействия замкнутых систем и окружающей среды. Это приводит к понятию динамических подобных (частично или полностью) объектов, систем и процессов, для которых процессы (балансировочные режимы и манёвры), отнесённые ко времени, основанном на сходственных собственных частотах, в некотором смысле идентичны. Сопровождение слова «иден­­тичность» эпитетом «некоторая» обусловлено тем, что подобие может осуществляться на разных физических носителях информационно-алго­рит­ми­ческих процессов (управления), на разных уподоблениях друг другу параметров подобных систем.

Уподобление — обезразмеривание, т.е. лишение реальных физических и информационных параметров их размерности (метров, килограммов, секунд и т.п.) отнесением их к каким-либо значениям характеристик замкнутой системы и среды, обладающим той же размерностью (метрами, килограммами, секундами и т.п.). В результате появляются безразмерные единицы измерения сходственных в некотором смысле параметров у сопоставляемых замкнутых систем, одинаково характерные для каждой из них вне зависимости от того, на каких материальных носителях они реализованы. Это свойство общевселенской меры лежит в основе моделирования на одних физических носителях процессов, реально протекающих на других физических носителях (аналоговые вычислительные машины); и в основе информационного (чисто теоретического) моделирования, в котором важна информационная модель, а её физический носитель интереса вообще не представляет (любой алгоритм, предписывающий какую-либо последовательность действий, по своему существу независим от его материального носителя).

Анализ течения подобного моделирующего процесса может протекать в более высокочастотном диапазоне, чем течение реального подобного моделируемого процесса: это даёт возможность заглянуть в будущие варианты развития моделируемого процесса, что является основой решения задач управления вообще и задачи о предсказуемости поведения, в частности.

Примеры такого рода моделирования, как уже было сказано выше, — все аэродинамические и прочностные эксперименты и расчёты в авиации, судостроении и космонавтике.

Моделирование высокочастотного процесса в низкочастотном диапазоне позволяет отследить причинно-следственные связи, которые обычно ускользают от наблюдателя при взгляде на скоротечный реальный процесс. Примером такого рода является скоростная и сверхскоростная киносъемка (более 105 кадров в секунду) и замедленная (по сравнению с реальностью) проекция ленты, что позволяет решать многие технические и биологические (медицинские) проблемы.

Многие проблемы в жизни общества неразрешимы вследствие неразвитости в тех отраслях науки, которые претендуют на работу с ними, адекватных теорий подобия.

Примером тому — экономическая наука современной цивилизации, которая при колоссальном расходовании природных и трудовых ресурсов не в состоянии обеспечить благоденствие всех, кто согласен честно своей трудовой деятельностью поддерживать жизнь общества и цивилизации в целом. Это обстоятельство — объективный показатель неадекватности так называемой «экономической науки» реально протекающим экономическим процессам и потребностям подавляющего большинства людей.

6.11. Информационно-алгоритмическая безопасность — устойчивость управления под воздействием
целенаправленно создаваемых помех

Термин «информационная безопасность» в последнее десятилетие стал довольно широко употребляться к месту и не к месту. При этом, мало кто из его употребляющих прямо говорит, как и какие процессы в жизни общества и в техносфере он связывает с этим термином. Т.е. в большинстве случаев его смысл при употреблении не определён.

При взгляде с позиций достаточно общей теории управления:

Информационная безопасность (а точнее — информационно-алгоритмическая безопасность) это — устойчивое течение процесса управления объектом (самоуправления объекта), в пределах допустимых отклонений от идеального предписанного режима, в условиях ЦЕЛЕНАПРАВЛЕННЫХ сторонних или внутренних попыток вывести управляемый объект из предписанного режима: от помех до перехвата управления им либо попыток уничтожения.

Таким образом термин «информационно-алгоритмическая безопасность» («информационная безопасность») всегда связан с конкретным объектом управления, находящимся в определённых условиях (среде). И соответственно он относится к полной функции управления, представляющей собой совокупность разнокачественных действий, осуществляемых в процессе управления, начиная от выявления факторов, требующих управленческого вмешательства и формирования целей управления, и кончая ликвидацией управленческих структур, выполнивших своё предназначение.

Это общее в явлении, именуемом «информационная безопасность», по отношению к информационно-алгоритмической безопасности как са́мого мелкого и незначительного дела, так и по отношению к информационно-алгоритмической безопасности человечества в целом в глобальном историческом процессе.

Разные схемы управления и разные концепции управления обеспечивают разный уровень информационно-алгоритмической безопасности.

При этом программная схема управления обладает парадоксальными характеристиками обеспечения информационно-алго­рит­мической безопасности вследствие своей полной неспособности воспринимать информацию извне:

· так артиллерийский снаряд, летящий по баллистической траектории, запрограммированной параметрами наведения орудия и энергообеспеченностью выстрела, по помехозащищённости процесса попадания в цель превосходит любую самонаводящуюся ракету.

· в других ситуациях программная схема управления, реализованная в отношении каких-то иных объектов (процессов), оказывается полностью неработоспособной, если в конфликте управлений противник навязывает ситуацию, в которой программа, заложенная в систему, становится неадекватной. Пример тому — разгром войском под руководством Александра Невского немецких рыцарей на льду Чудского озера: немецкая тактика оказалась несоответствующей обстоятельствам её реального боевого применения, предложенных Александром немцам.

Программно-адаптивная схема менее парадоксальна, но абсолютной помехоустойчивостью тоже не обладает: примерами тому всевозможные успешные хитрости военных на тему о том, как самонаводящиеся средства поражения (ракеты, торпеды, мины) увести на ложные цели, заставить сработать их взрыватели ложно, либо вообще заставить не сработать в тех ситуациях, когда их программы обязывают их срабатывать.

Наиболее высокий уровень информационно-алгоритмической безопасности обеспечивает организация процессов обработки информации в интеллектуальной модификации схемы управления предиктор-корректор, показанная в разделе 5.4 и повторяемая ниже.

В ней информация, поступающая из внешней среды, достоверность которой сомнительна, алгоритмом-сторожем загружается в «буферную память» временного хранения (на схеме она обозначена надписью «Ка­рантин»). Некий алгоритм-ревизор в «Преобразователе информации», выполняя в данном варианте роль защитника мировоззрения и миропонимания от внедрения в них недостоверной информации, анализирует информацию в буферной памяти «Карантина» и присваивает ей значения: «ложь» — «истина» — «требует дополнительной проверки» и т.п. Только после этого определения и снабжения информационного модуля соответствующим маркером («ложь» — «истина» и т.п.) алгоритм-ревизор перегружает информацию из «Карантина» в долговременную память, информационная база которой обладает более высокой значимостью для алгоритма выработки управленческого решения, чем входные потоки информации. Также «Преобразователь информации» осуществляет совершенствование алгоритма-сторожа, распределяющего входной поток информации между «Карантином» и остальной памятью.

Управленческое решение строится в процессе сопоставления информации, уже наличествующей в долговре­­менной памяти, с информацией входных потоков. При этом информация, помещённая в «Карантин», не может стать основой выработки управленческих ре­шений, по крайней мере, — особо значимых решений, неосуществимость которых неприемлема.

Обеспечение информационно-алгоритмической безопасности и обеспечение режима секретности — не одно и то же:

Хотя это может показаться парадоксальным, но в ряде случаев создание режима секретности и его поддержание может быть вредным для обеспечения информационно-алгорит­ми­ческой безопасности управления[240].



Поделиться:


Последнее изменение этой страницы: 2016-04-08; просмотров: 226; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.24.111 (0.01 с.)