Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Структура простого категоричного силогізм

Поиск

У силогізм входить рівно три терміна:

S — менший термін: суб'єкт висновку (входить також у менше посилання);

P — більший термін: предикат заключення (входить також у велике посилання);

M — средній термін: входить в обидва посилання, але не входить у висновок.

Підмет 'S' (суб'єкт) - те, щодо чого ми висловлюємо (ділиться на два види):

Певний: Одиничне, Приватне, Множинне

* Поодинокі [судження] - в яких підмет є індивідуальним поняттям. Прикл: «Ньютон відкрив закон тяжіння»

* Приватне судження - в якому підметом судження є поняття, взяте в частині свого об'єму. Прикл: «Деякі S суть P»

* Множинне судження - це ті, в яких кілька підметів класових понять. Прикл: «комахи, павуки, раки є членистоногі»

Невизначена. Прикл: «світає», «боляче» і т. п.

Присудок 'P' (предикат) - те, що ми висловлюємо (2 види суджень):

розповідні - це судження щодо подій, станів, процесів або діяльності скороминущі. Прикл: «Роза в саду квітне».

Описові - коли одному або багатьом предметам приписується яка-небудь властивість. Суб'єктом завжди є певна річ. Прикл: «Вогонь гарячий», «сніг білий».

Відношення між підметом і присудком:

Судження тотожності - поняття суб'єкта та предиката мають один і той же обсяг. Прикл: «всякий рівносторонній трикутник є рівнокутний трикутник»

Судження підпорядкування - поняття з менш широким обсягом підпорядковується поняттю з ширшим обсягом. Прикл: «Собака є домашня тварина»

Судження відносин - саме простору, часу, відносин. Прикл: «Будинок знаходиться на вулиці»

При визначені відносин між підметом і присудком важливою є чітка формалізація термінів, оскільки бездомна собака хоч і не є домашньою з точки зору проживання в будинку, все одно відноситься до класу домашніх тварин з точки зору приналежності за соціально-біологічною ознакою. Тобто слід розуміти, що "домашня тварина" з соціально-біологічної класифікації в окремих випадках може бути "НЕДОМАШНЬОЮ твариною" з точки зору місця проживання, тобто з соціально-побутової точки зору

 

Загальні правила категор силогіз

Правила термінів:

1) в силогізмі повинно бути 3 терміни. Висновок в силогізмі ґрунтується на відношенні 2 крайніх термінів до середнього

2) середній термін повинен бути розподілений хоча б одній з умов

3) термін який розподілений в умові не може бути розподілений в висновку

Правила умов:

1) Хоча б 1 з умов повин бути стверджув суджень, бо з 2 заперечув умов неможна зробити ніякого висновку

2) Якщо одна з умов заперечув судження то і висновок повинен бути заперечувальн суджен

3) Хочаб 1 з умов повинна бути загальним судженням, бо з 2 часткових умов не можна зробити одно знач висновку

4) Якщо 1 з умов є частков суджен то і висновок повинен бути частковим судженням

 

Фігури і модуси категорич силогізму

Фігурами силогізма називаються форми силогізма, які відрізняються положенням середнього терміна в посиланнях:

    Фігура 1   Фігура 2   Фігура 3   Фігура 4
Більше посилання:   M—P   P—M   M—P   P—M
Меньше посилання:   S—M   S—M   M—S   M—S
Заключення:   S—P   S—P   S—P   S—P

Кожній фігурі відповідають модуси — форми силогізма, які відрізняються кількістю та якістю посилань і заключень. Модуси вивчались ще середньовічними школами, і для правильних модусів кожній фігурі були придумані мнемонічні імена:

Фігура 1   Фігура 2   Фігура 3   Фігура 4
Barbara   Cesare   Darapti   Bramantip
Celarent   Camestres   Disamis   Camenes
Darii   Festino   Datisi   Dimaris
Ferio   Baroco   Felapton   Fesapo
        Bocardo   Fresison
        Ferison    

: ААА АІІ ЕАЕ АОО

 

ЕАЕ ЕІО АЕЕ АОО

 

ОАО АІІ ЕАО ЕІО ІАІ

 

ААІ ЕАО ІАІ ЕІО АЕЕ

 

Особливі правила і пізнавальне значення фігур силогізму

1 фігура: більша умова- загальн судження

Це означає що при міркуванні за 1 фігурою з дотриманням до загальних правил істинний висновок завжди дотримується, якщо більша умова загальн судження

Менша умова- стверджувальне судження

(всі планети сонячної системи рухаються навколо сонця

Земля- планета сонячної системи)

== Земля обертається навколо сонця

 

 

2 фігура: Більша умова- загальне судження

Одна з умов- заперечу вальне судження (висновок заперечу вальний)

(Всі квадрати- прямокутники

Трапеції не прямокутники)

==Всі трапеції не квадратр

 

 

3 фігура: менша умова- стверджувальне суджен

Висновок- часткове судження

(Всі птахи в’ють гнізда

Дееякі птахи- хижаки)

==Деякі хижаки в’ють гнізда

 

4 фігура: Якщо більша умова- стверджувальн суджен, то менша умова повина бути загальною

Якщо одна з умов заперечувальн судження, то більша умова повин бути загальною

(Всі кити- ссавці

Жоден ссавець не є рибою

== Жодна риба не є китом

 

Категоричний силогізм з виділяючим судженням

Якщо розглянути правила 4 фігур силогізму міркувань які стосуються випадків коли умовами не є виділяючи судження, то якщо ж умовами є виділяючи судження, то такі силогізми не підлягають деяким загальним правилам, а також особливим правилам фігур. Розглянем приклади:

1)Виведення з 2 частков умов

Деякі істор- випуск ОА

Деякі вчені (і тільки вчені)- історики

==Деякі вчені- випускники ОА

 

В цьому силогізмі менша умова- частково-стверджувальне виділяючи судження, в якому розподілений предикат (М+), що є середнім терміном силогізмом. Оскільки середній термін розподілений в одній з умов, тому вжив висновок з необхідністю. Легко перевірити, що всі загальні правила дотримані.

2) Виведення з 1-ою фігурою в якій більша умова є частковим судженням

Вище наведений приклад також ілюструє необхідність висновку також силогізму бо середній термін розподілений першою умовою.

3)одна з умов часткове судження, а висновок- загальне судження

Деякі музикан-скрипалі

Всі учасники конкурсу-скрипалі

==Всі учасник конкурсу- музиканти

 

 

4)виведення за 2 фігурою з 2 стверджувальних умов

У вищенаведеному прикладі висновок за 2 фігурою силогізму слідує з необхідністю бо середній термін скрипалів розподілен в умові

5) виведення за 1 фігурою в якій менша умова є заперечу вальним судженням

Особа, що вчинила злочин притягнута до кримін відповідальності

Петренко не здійснив злочин

==Петренко не притягується до кримін відповідальності

Як відомо з правил 1 фігури, менша умова повинна бути стверджувальним судженням. Але оскільки більша умова є виділяючим, загально стверджувальним судженням, в якому розподілений предикат, то висновок отриманий в результаті міркування є істинним. Це обумовл особлив виділяючи суджень і розподіл їх термінів.

Виведення із суджень з відношеннями

Міркування базується не тільки з простих але і із складних суджень

Широко використовуються міркування умовами яких є імплікативні (умовні) і роздільні (диз’юнктивні), які виступають в різних комбінаціях один з одним, або категорич судженнями. Такими є міркування: чисто умовні, умовно категоричні, роздільно категоричні,умовно роздільні

Особливістю цих міркувань є те що виведення висновку з умов визначається не відношеннями між термінами, а характером логічних зв’язків міжс судженнями, тому при аналізі умов суб’єкта предикатної не враховують.

Чисто умовне і умовно- категоричне міркування

Чистоумовне міркуван - назив міркуван в якому обидві умови та висновок є умовними (імплікативними) судженнями

Логічна схема така:

 

За цим міркуванням- наслідок наслідку є наслідок умови

Конвент конвента є конвентом антецедента

Міркування в якому висновок дістають з 2 імплікативних суджень належить до простих міркувань, але висновок із більшого числа умов, які утворюють ланцюжок умовних суджень

Умовнокатегоричним називають міркування в якому 1 з умов імплікативне судження, а друга умова і висновок- категоричні судження Ці міркуван мають 2 правильні модуси: 1 стверджувальний модус (modus ponens) і заперечу вальний модус (modus tollens)

 

Порушенням правил модус поненс можуть бути ствердження у меншій умові консеквентна імплікацій, що суперечить правилу модус поненс

Аналогічно порушення правила модус толенс полягає в тому, що заперечують не консеквент, а антицидент

 



Поделиться:


Последнее изменение этой страницы: 2016-04-08; просмотров: 568; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.23.103.203 (0.006 с.)