ЗНАЕТЕ ЛИ ВЫ?

История развития блоков питания



Блоки питания стандарта АТХ

из цикла статей "Блоки питания стандарта АТХ"

источник: журнал "Upgrade" # 2 (17) 2004

Используемые в настоящее время в электронной аппаратуре блоки питания (БП) можно разделить на нестабилизированные и стабилизированные. Последние отличаются наличием специальной схемы, поддерживающей выходное напряжение постоянным вне зависимости от колебаний напряжения на входе или мощности нагрузки. В свою очередь, стабилизированные БП можно грубо разделить на два класса по типу используемого стабилизатора: линейные и импульсные.

Блок питания с линейным стабилизатором крайне прост: трансформатор преобразует напряжение сети (220 или 110 В) в близкое к требуемому, затем оно выпрямляется диодным мостом, его пульсации сглаживаются конденсатором, и уже постоянное напряжение поступает на вход стабилизатора. Последний состоит из регулирующего элемента - транзистора и управляющей схемы U1, конкретная конструкция которой может меняться в зависимости от требований к устройству. Такая схема очень проста, но при этом обеспечивает на выходе постоянное напряжение, причем точность поддержания его уровня может быть очень высокой. К сожалению, у этой системы есть два принципиальных недостатка, устранить которые практически невозможно. Во-первых, это трансформатор: из-за низкой частоты напряжения в сети (50 или 60 Гц в зависимости от страны) его габариты и масса, мягко говоря, велики. Так, масса даже самого компактного трансформатора тороидального типа на сравнительно скромную мощность 150 Вт несколько килограммов, диаметр порядка 11 см, высота 5 см; трансформатор же на вполне уже обыденную мощность 300-400 Вт не войдет в габариты современного компьютерного блока питания.

Другой принципиальный недостаток БП с линейными стабилизаторами вытекает из принципа работы самого стабилизатора: дело в том, что "излишки" напряжения падают на регулирующем транзисторе, т. е. практически он играет роль переменного резистора, только управляется напряжением с блока U1, а не поворотом ручки. Соответственно на этом транзисторе будет выделяться в виде тепла мощность P = U x I, где U - разница между входным и выходным напряжениями стабилизатора, а I - отдаваемый им в нагрузку ток. А так как для нормальной работы мощного стабилизатора необходимо, чтобы разница напряжений была порядка нескольких вольт, то и выделяемая мощность оказывается большой. Скажем, если попробовать сконструировать линейный блок питания, отвечающий требованиям, которые предъявляются к современному 300-Вт АТХ-блоку, то один только стабилизатор напряжения +12В не полной нагрузке будет рассеивать до 50 Вт. Такая высокая выделяемая мощность требует соответствующего охлаждения - то есть крупных радиаторов с обдувом сравнительно мощными вентиляторами, что никак не может устроить нас ни по габаритам, ни по уровню шума.

Для решения этих проблем приходится использовать принципиально иной тип блока питания - так называемый импульсный (в зарубежной литературе - SMPS, switching mode power supply). Его устройство значительно сложнее.

Основа импульсного БП - это контроллер широтно-импульсной модуляции (ШИМ), блок транзисторных ключей и высокочастотный трансформатор. Переменное напряжение питающей сети выпрямляется диодным мостом и сглаживается двумя последовательно включенными конденсаторами, после чего полученное постоянное напряжение (для сети переменного тока 220 В это будет более 300 В подается на транзисторы силового ключа. Транзисторы работают только в так называемом ключевом режиме, т. е. они либо полностью открыты, либо полностью закрыты, в результате чего выделяемая на них тепловая мощность минимальна, поскольку в открытом состоянии крайне невелико падение напряжения на транзисторе, а в закрытом - практически равен нулю ток через него. Их произведение будет мало и в том и в другом случае. Таким образом, мы избавились от одного из двух недостатков линейного стабилизатора - большой мощности, рассеиваемой на транзисторе.

Другой недостаток - большие габариты трансформатора - преодолевается без особых проблем, ведь трансформатор теперь подключен не к низкочастотной электросети, а к блоку ключей, частоту работы которого мы задаем сами. Габариты же трансформатора сильно уменьшаются с увеличением его рабочей частоты: так, трансформатор на те же 150 Вт, но уже работающий на частоте 60 кГц, будет кубиком со стороной всего около 3 см.

Регулировка же выходных напряжений осуществляется изменением ширины импульсов, подаваемых с ШИМ-контроллера на блок транзисторных ключей. Чем шире импульс, тем больше энергии он "накачает" в трансформатор, и тем больше будет напряжение на его вторичных обмотках. ШИМ-контроллер следит за выходными напряжениями блока и при их изменении подстраивает ширину импульсов так, чтобы оно вернулись в заданные пределы.

Однако выходных напряжений в компьютерном блоке питания много, а сделать на каждое по собственному стабилизатору невозможно. Поэтому в блок устанавливается только один импульсный стабилизатор, непосредственно отслеживающий сразу два основных напряжения: +5 и +12 В. Разумеется, это приведет к тому, что при увеличении нагрузки на +5-В ШИМ-контроллер увеличит ширину импульсов, чтобы скомпенсировать возросшее падение напряжения на шине +5 В, а это, в свою очередь, приведет к увеличению всех остальных напряжений, поскольку трансформатор общий для всех. Для компенсации этого эффекта в схему введен так называемый дроссель групповой стабилизации, через который проходят все выходные напряжения; разумеется, полностью избавиться от всех побочных эффектов он не позволяет, но все же заметно улучшает ситуацию. Такая схема типична для компьютерных блоков питания.

АТХ

В блоке питания АТХ количество выходных напряжения увеличилось: добавились напряжения +3,3 и +5 В SB (Stand-By). Последнее было введено для реализации таких функций, как "пробуждение" компьютера по сигналу из локальной сети, от модема, по нажатию клавиши на клавиатуре или мыши, а также для реализации "дремлющего" режима S3 Suspend-to-RAM, в котором все текущие данные хранятся в оперативной памяти даже при выключенном компьютере. Очевидно, что напряжение +5 В SB должно присутствовать вне зависимости от того, включен или выключен компьютер (если, конечно, он физически не отключен от розетки), поэтому его стабилизатор - это практически отдельный миниатюрный маломощный блок питания, функционирующий непрерывно. Если в формате AT кнопка включения компьютера снимала с блока питания напряжение 220 В, то в АТХ кнопка включения лишь дает на блок питания команду остановить ШИМ-контроллер основного стабилизатора, но сам блок при этом остается подключенным к сети, и в нем продолжает работать стабилизатор дежурного режима +5 В SB. Для того чтобы отключить блок полностью, требуется либо воспользоваться имеющейся на многих моделях клавишей на задней стенке блока, либо физически отключить его от сети 220 В.

Постепенно в стандарт АТХ вносились изменения, но до определенного момента они не оказывали существенного влияния на блок питания. Новой тенденцией, приведшей к заметному с точки зрения пользователя изменению БП, был переход на 12-В питание стабилизатора процессора.

АТХ12V

До выпуска компанией Intel процессора Pentium 4 со значительной потребляемой мощностью обычным решением было питание стабилизатора процессора от +5-В шины. Очевидно, что для процессора с потребляемой мощностью, скажем, 50 Вт даже без учета потерь на расположенном на системной плате стабилизаторе (а это еще как минимум 10%) ток при питании от упомянутой шины составит 10 А, что весьма немало. Такие токи, во-первых, осложняют размещение компонентов на системной плате, ибо крупный разъем питания АТХ зачастую трудно расположить в удобном для разработчика печатной платы месте (как можно ближе к стабилизатору питания процессора), а во-вторых, недостаточно плотный контакт в разъеме питания системной платы вызывал перегрев контактов и разъема с дальнейшим ухудшением контакта и более чем вероятными сбоями системы. Выходом из этой ситуации стал переход на питание стабилизатора ЦП от +12-В шины. Известно, что если напряжение в 2,4 раза больше, то ток при той же потребляемой мощности будет в 2,4 раза меньше, а, кроме того, установленный на плате стабилизатор, как и любой преобразователь постоянного тока, увеличивает свой КПД с ростом входного напряжения. Однако возникла другая проблема: поскольку до последнего времени серьезных потребителей +12 В на системной плате не было, то в разъеме ее питания был предусмотрен всего один провод для этого напряжения, что могло привести к перегреву и обгоранию контактов из-за чрезмерно большого тока через них. Эта проблема была решена добавлением еще одного разъема питания системной платы - маленького четырех контактного ATX12V, который не только добавил два дополнительных провода +12 В, но и благодаря своим скромным размерам позволил размещать его рядом со стабилизаторами питания процессора, серьезно упростив работу разработчикам печатных плат. Таким образом, летом 2000 г. компания Intel выпустила инженерное дополнение к стандарту АТХ 2.03, названное "ATX12V". Помимо вышеупомянутого разъема, в нем были ужесточены требования к блоку питания: при той же суммарной выходной мощности, что и раньше, блок должен был обеспечивать большие токи по шинам +12 и +3,3 В. Более того, устанавливалась нижняя граница максимального тока по шине +12 В - 10 А вне зависимости от суммарной мощности БП; блок, не обеспечивающий такого тока, не может считаться соответствующим стандарту ATX12V.

Так как физически новые блоки отличались от старых лишь дополнительным разъемом, то в продаже в большом количестве появились различные переходники для адаптации АТХ-блоков питания к стандарту ATX12V. Разумеется, в связи с возросшими требованиями к нагрузочным токам для мощных систем такая адаптация была некорректна, но у систем со сравнительно небольшим энергопотреблением никаких проблем не возникало.

Следующее заметное изменение принесла версия 1.2 все того же стандарта ATX12V. Напряжение -5 В, до этого момента обязательное для всех блоков питания, практически уже не использовалось: оно подавалось только на системную плату и разъемы ISA, которые уже канули в Лету. Даже в более старых компьютерах, где еще использовались ISA-платы, это напряжение, как правило, не требовалось. В связи с этим в стандарте ATX12V 1.2 напряжение -5 В стало необязательным, и вскоре на рынке появились БП, у которых в разъеме питания системной платы отсутствовал соответствующий провод.

Тем временем наметилась новая тенденция: если раньше потребление по шине +3,3 В росло, то теперь оно, напротив, стало падать, ибо все больше производителей стали использовать на своих платах отдельные стабилизаторы, питающиеся от +5 или чаще +12 В и формирующие необходимые для платы напряжения. Более того, современные графические платы питаются уже не от AGP, а от отдельного разъема питания, на который просто не заводится напряжение +3,3 В. Соответственно, требования к этому напряжению падают, а к нагрузочной способности по шине +12 В, наоборот, увеличиваются, особенно учитывая постоянно растущее энергопотребление процессоров.

ATX12V 2.0

Для удовлетворения вышеописанных требований был разработан стандарт ATX12V, версия 2.0 (не путать со стандартом АТХ 2.0; ATX12V 2.0 соответствует версии 2.2 стандарта АТХ). Это не просто косметические улучшения БП: изменения довольно серьезны, и старые блоки питания, хотя и будут частично совместимы с системными платами стандарта ATX12V 2.0, во многих случаях придется заменить.

Основное отличие нового стандарта в том, что теперь в блоке питания предусмотрены сразу две шины +12 В. Связано это с тем, что увеличить нагрузочный ток по одной шине выше 20 А нельзя - по требованиям стандартов безопасности мощность цепей, к которым есть открытый доступ для оператора, не должна превышать 240 В-А (12 Вх20 А). При этом заметно уменьшились максимальные нагрузочные токи по шинам +3,3 и +5 В (до полутора раз по сравнению с блоками ATX12V 1.1 той же мощности).

Претерпел изменения и разъем питания системной платы. Если раньше это был 20-контактный разъем Molex 39-01-2200, то теперь он заменен на 24-контактный Molex 39-01-2240 - добавилось по одному контакту +12, +3,3, +5 В и "земля". Легко заметить, что двадцать крайних контактов у обоих разъемов совершенно одинаковы, поэтому блок питания ATX12V 2.0 можно использовать в паре с ATX12V 1.1-платой (если сбоку от ее разъема питания есть свободное место для четырех "лишних" контактов разъема) и наоборот, однако в последнем случае надо учитывать, что с мощной системой ATX12V 2.0 с большим энергопотреблением блок питания, соответствующий старому стандарту, может не справиться.

Привычный четырех контактный разъем ATX12V, предназначенный для питания стабилизатора процессора, в новом стандарте не изменился, но теперь на него подается напряжение +12 В с другого источника, так что процессор имеет свое собственное питание, до некоторой степени независимое от питания системной платы и различной периферии, что должно положительно сказаться на качестве питающих напряжений.

Также из нового стандарта полностью исчезло напряжение -5 В: оно не предусмотрено даже как необязательное. Вместе с ним исчез и появившийся несколькими годами раньше в стандарте АТХ 2.01 разъем AUX для дополнительной подпитки системной платы (на него выводились напряжения +5 и +3,3 В, а сам разъем напоминал разъемы питания системных плат форм-фактора AT); несмотря на рекомендацию использовать его в системах с большим энергопотреблением, на практике системные платы с таким разъемом практически не выпускались. Кроме того, разъемы питания Serial ATA-винчестеров теперь стали обязательны, впрочем, последние модели блоков питания ATX12V 1.1 уже выпускались с ними.

Также стоит отметить появление в стандарте рекомендаций по максимальным нагрузочным токам для БП мощностью 350 и 400 Вт - до этого регламентировались токи для блоков питания до 300 Вт включительно, что оставляло производителям более мощных БП больший простор для выбора характеристик, а это, в свою очередь, приводило к тому, что блоки большой мощности сильно различались между собой по возможностям, а некоторые не во всем превосходили даже стандартный 300 Вт блок питания.

На сегодня блоков стандарта ATX12V 2.0 в широкой продаже нет, ожидать их появления стоит разве что вместе с появлением корпусов и системных плат нового стандарта ВТХ.

EPS12V

Вообще говоря, EPS12V - это стандарт для серверов начального уровня, так что его описание несколько выходит за рамки этой статьи. Однако упомянуть о нем все же необходимо: дело в том, что в продаже достаточно часто встречаются соответствующие ему блоки питания мощностью 400-500 Вт, которые представляют определенный интерес и для владельцев мощных систем стандарта АТХ.

Физически блоки стандарта EPS12V по габаритам и расположению крепежных отверстий совместимы с блоками АТХ, так что ничто не препятствует их установке в обычный АТХ-корпус. Разъем питания системной платы стандарта EPS12V аналогичен таковому в ATX12V 2.0-платах, причем не только физически (это 24-контактный разъем такого же типа), но и по разводке контактов; таким образом, к ЕР512V-блоку питания можно без проблем подключать системные платы ATX12V 2.0 и при наличии физической возможности подключить более крупный разъем также и платы ATX12V 1.1 (при отсутствии такой возможности следует использовать переходник).

Разъем питания процессоров у EPS12V собственный, восьми контактный. Однако четыре крайних контакта в точности совпадают с разъемом ATX12V, поэтому его также можно напрямую подключить к обычной ATX12V системной плате, если сбоку от установленного на ней разъема есть свободное место, либо же, если места нет, воспользоваться переходником.

Важно, что блоки EPS12V бывают как с одним источником + 12 В, так и с двумя, аналогично ATX12V 2.0. В последнем случае подключать на системной плате ATX12V 1.1 второй источник +12 В блока питания (он выведен на 8-контактный разъем питания процессора) можно, только будучи уверенным, что шины питания процессора и шина +12 В с разъема питания самой системной платы полностью разделены; в противном случае системная плата может выйти из строя. С системными платами стандарта ATX12V 2.0 такой проблемы возникнуть не может - у них шины разделены по определению, ибо используются два раздельных источника питания.

Выходная мощность

Прежде всего, необходимо определить, что такое мощность блока питания. Это максимальная суммарная нагрузка по всем выходным шинам, при которой БП может работать неограниченно долгое время. Помимо общей мощности, на этикетке также часто указывается максимальная суммарная мощность для шин +5 и +3,3 В - она обычно составляет около двух третей от полной. КПД блока в этой мощности не учитывается, т. е. это "чистая" нагрузка, которую он может держать на своем выходе. Более того, не должно учитываться и время работы при полной нагрузке; если производителем явно не указано иное, то блок должен быть способен работать при полной нагрузке неограниченно долго.

Максимальные токи нагрузки

Экспериментальное измерение потребляемой компьютером мощности показывает, что даже сравнительно мощный компьютер с 3-ГГц Pentium 4 потребляет немногим более 150 Вт, однако еще один эксперимент показывает, что стоит установить в него мощный графический адаптер (например, класса RADEON 9800), и 250 Вт может уже и не хватить. Происходит это потому, что у любого блока питания, помимо мощности, есть другое принципиальное ограничение - максимально допустимый ток по каждому из выходов. На практике достаточно часто возникает ситуация, когда из-за несбалансированности нагрузки на БП потребляемый по какой-то одной шине ток приближается к порогу стабильной работы блока, в то время как суммарная потребляемая от него мощность сравнительно невысока; и, к сожалению, предсказать такую ситуацию практически невозможно, ибо достоверных данных об энергопотреблении большей части комплектующих попросту нет.

Допустимые токи нагрузки для блоков питания, казалось бы, одной и той же мощности, могут различаться довольно сильно. Причем нельзя сказать, что с течением времени все параметры БП улучшаются: так, купленная полгода назад система с мощным процессором и графическим адаптером, питающимися от шины +5 В, может нормально работать с 250-Вт АТХ-блоком питания пятилетней давности, зато откажется запускаться с новейшим блоком ATX12V 2.0, только-только сошедшим с конвейера. Из этого не следует, что новый блок питания хуже старого, он лучше, но не для этой системы. Ни в коем случае нельзя рассматривать блок питания в отрыве от системы, с которой он будет использоваться, ибо абстрактные ватты в общем случае ни о чем не говорят.

Но даже в пределах одного стандарта (наиболее распространенного на данный момент ATX12V 1.1) все не так просто. Во-первых, многие недостаточно добросовестные производители блоков питания низшего класса зачастую указывают на них выходную мощность, либо просто не соответствующую реальности, либо не соответствующую заявленным выходным токам, т. е. испытания показывают, что блок в принципе способен работать с указанной для него суммарной мощностью нагрузки, но нагрузка по каждой конкретной шине в отдельности согласно стандарту соответствует блоку на одну-две ступени меньшей мощности. Причина этого проста - рекомендованные токи нагрузки для 300-Вт БП ATX12V при умножении их на соответствующие напряжения и сложении полученных мощностей дают мощность почти в полтора раза выше заявленной (12В х15 А + 5В х З0А + 3,ЗВ х 28А = 422,4Вт). Разумеется, при попытке нагрузить 300-Вт блок мощностью 400 Вт он с очень большой вероятностью просто выйдет из строя, однако на практике такие запасы по токам нагрузки позволяют не беспокоиться о равномерном распределении нагрузки по разным шинам, а как уже отмечалось, в обычном компьютере оно скорее всего и не будет равномерным.

На некоторых же недорогих блоках вдруг обнаруживается, что подобная сумма произведений превышает заявленную изготовителем мощность всего на 10-20 Вт, и если на испытательном стенде, где можно задать произвольную нагрузку на каждую шину, блок демонстрирует способность выдержать 300 Вт (для этого, разумеется, приходится "вешать" на каждую шину максимальную для нее нагрузку), то на практике ситуация со столь аккуратным распределением мощностей не возникает практически никогда. Поэтому в реальных условиях пользователь, скорее всего, столкнется не с ограничением общей мощности блока питания, а с ограничением максимального тока какой-либо одной из шин. Вот и получается не очень красивая картина: с одной стороны, блок вроде бы формально может работать с 300-Вт нагрузкой, но с другой - в реальных применениях очень сильно уступает другим, более дорогим БП, также заявленным как 300-Вт.

Во-вторых, текущий стандарт описывает рекомендованные токи нагрузки только для блоков мощностью до 300 Вт включительно. Параметры более мощных блоков полностью отданы на усмотрение производителя (надо заметить, что в ATX12V 2.0 это упущение исправлено, там описаны также рекомендуемые спецификации для 350- и 400-Вт блоков питания). Для примера в табл. 2 приведены максимальные токи нагрузки для четырех блоков питания Zalman: два - мощностью 300 и два 400 Вт. Обратите внимание на ток нагрузки шины +12 В - очевидно, что если на блоке ZM300A будет срабатывать защита по перегрузке этой шины, то замена его на более мощный ZM400A не исправит ситуацию, так как у него та же нагрузочная способность по шине +12 В, а вот установка блока ZM300B или ZM400B поможет, несмотря на то, что первый имеет ту же мощность 300 Вт.

Таким образом, одна из наиболее важных характеристик блока питания - отнюдь не суммарная выходная мощность, а допустимые токи нагрузки по каждой из шин.

Защита блока питания

В любом компьютерном блоке питания, претендующем на соответствие стандартам, есть несколько систем защиты, призванных уберечь сам БП от каких-либо внешних воздействий и не допустить повреждения подключенных к нему компонентов в случае выхода из строя его самого.

Базовая защита блока питания - это защита по максимальной выходной мощности. Она достаточно эффективна как средство защиты от перегрева - ведь тепловыделение блока зависит от нагрузки на него, но при этом не способна уберечь блок от выхода из строя при сильной перегрузке какой-либо одной из выходных шин. В такой ситуации общая потребляемая мощность может и не превысить допустимую, в то время как перегруженная шина выйдет из строя из-за превышения максимального тока, что уже, в свою очередь, приведет к полному выходу из строя всего блока питания.

Для борьбы с этим в качественных блоках, помимо общей защиты по мощности, шины с большой нагрузочной способностью также оснащены индивидуальной защитой, останавливающей блок при перегрузке любой такой шины. Необходимо отметить, что, согласно стандарту, блок должен корректно справляться не только с перегрузкой, но и с замыканием шин друг на друга, а также на "землю".

Третья важная ступень защиты уже рассчитана на предотвращение поломок оборудования при выходе из строя самого блока питания: она контролирует выходные напряжения и, если они по какой-либо причине оказываются ниже или выше допустимого уровня, останавливает блок. Допустимый уровень в данном случае - не приведенные выше допустимые отклонения напряжений в процессе работы, а несколько большие значения, иначе защита активировалась бы при отдельных коротких всплесках напряжения, не способных причинить никакого вреда.

К сожалению, некоторые блоки нижнего ценового диапазона не оснащаются подобной защитой, что в случае выхода такого блока из строя может привести (и зачастую это происходит) к отказу практически всего системного блока, в том числе электроники жестких дисков, системной платы, графического адаптера и др. Блоки питания среднего ценового диапазона, как правило, уже разрабатываются на базе микросхем ШИМ-контроллеров со встроенной защитой, поэтому для них вероятность таких происшествий крайне мала.

Вопреки распространенному мнению, блоки не оборудуются защитой от превышения входного напряжения. Впрочем, импульсный блок питания способен работать в очень широком диапазоне напряжений, поэтому в штатном режиме для нормальной работы ему подходит практически любая электросеть без дополнительной стабилизации. Выход же блока питания из строя из-за превышения входного напряжения обычно случается при работе его в 220-В сети, когда переключатель напряжения сети установлен в положение "110 В". Такая ситуация означает практически мгновенный отказ БП. Установленный на входе блока питания плавкий предохранитель предназначен для защиты не самого БП, а питающей 220-В сети и аппаратуры в ней, поскольку срабатывает он уже после выхода из строя ключевых транзисторов блока, а установленные там же варисторы (нелинейные резисторы, сопротивление которых резко падает, если напряжение на них превышает некоторый порог) рассчитаны на защиту от коротких резких всплесков напряжения (например, при близком ударе молнии), но не от подключения блока к сети со слишком большим напряжением.

Кроме перечисленного, стандарт предусматривает возможность установки в блок защиты от перегрева, однако это необязательное требование, и абсолютное большинство производителей такую защиту не устанавливают.

КПД блока питания

Коэффициент полезного действия блока определяет отношение отдаваемой им на нагрузку мощности к активной мощности, потребляемой блоком от сети питания.

В данный момент стандарт ATX12V 1.1 требует КПД не менее 68% на максимальной мощности (для импульсного блока питания в среднем КПД растет с увеличением мощности нагрузки). В версии 2.0 этого стандарта требования ужесточены - теперь КПД должен составлять не менее 60% при мощности нагрузки 20% от максимальной и не менее 70% при мощности нагрузки 50% и более от максимальной.

Здесь можно лишь отметить, что, как показывает выборочное тестирование различных блоков, реальный КПД меняется от 70 до 85%, т. е. без каких-либо проблем удовлетворяет требованиям стандарта.

Коэффициент мощности

В цепях переменного тока принято различать четыре вида мощности. Во-первых, мгновенная мощность - произведение тока на напряжение в данный момент времени. Во-вторых, так называемая активная мощность - мощность, выделяющаяся на чисто резистивной нагрузке, измеряется она в ваттах. Активная мощность целиком идет на полезную работу (нагрев, механическое движение), и обычно именно ее понимают под потребляемой мощностью.

Так как реальная нагрузка обычно имеет еще индуктивную и емкостную составляющие, то к активной мощности добавляется реактивная, измеряемая в вольт-амперах реактивных (ВАР). Нагрузкой реактивная мощность не потребляется: полученная в течение одного полупериода сетевого напряжения, она полностью отдается обратно в сеть в течение следующего полупериода, лишь напрасно нагружая провода. Таким образом, реактивная мощность совершенно бесполезна, и с ней по возможности борются, применяя различные корректирующие устройства. Векторная сумма активной и реактивной мощностей дает полную мощность - соответственно, квадрат полной мощности равен сумме квадратов активной и реактивной мощностей.

Коэффициентом мощности называется отношение активной мощности к полной. Так как разница между этими двумя мощностями появляется из-за реактивной мощности, не несущей никакой пользы, то в идеале активная мощность должна быть полной и соответственно коэффициент мощности - единица.

Высокая реактивная мощность может возникать либо в результате большого сдвига фаз между напряжением и током, либо в случае, если потребление тока сильно отличается от синусоидального. В импульсных блоках питания реализуется преимущественно второй случай, что обусловлено особенностями их схемотехники: на входе такого блока питания стоит выпрямитель и следом за ним - конденсатор (или, если быть точным, обычно два конденсатора), с которого уже снимается напряжение питания для импульсного преобразователя. При включении блока питания в сеть первой четверть волной сетевого напряжения конденсатор заряжается до трехсот с небольшим вольт. Потом сетевое напряжение начинает быстро спадать (вторая четверть волна), в то время как конденсатор значительно медленнее разряжается в нагрузку - в результате в момент начала роста сетевого напряжения (третья четверть волна) напряжение на не успевшем разрядиться конденсаторе будет около 250 В, и пока напряжение в сети меньше - ток заряда будет равен нулю (диоды выпрямителя заперты приложенным к ним обратным напряжением, равным разности напряжений на конденсаторе и в сети). На последней трети четверть волны (разумеется, все численные оценки даны весьма приблизительно, реально они зависят от величины нагрузки и емкости конденсатора) напряжение в сети превысит напряжение на конденсаторе - и потечет ток заряда. Заряд прекратится, как только напряжение в сети снова станет меньше, чем на конденсаторе, - это произойдет в первой половине четвертой четверть волны. В результате получается, что блок питания потребляет ток только в моменты зарядки конденсатора: на осциллограмме такое потребление выглядит как острые высокие пики, не имеющие ничего общего с плавной синусоидой.

Для коррекции коэффициента мощности (Power Factor Correction, PFC) в настоящее время применяют два типа схем: пассивные и активные.

Пассивные схемы представляют собой один массивный дроссель, включенный последовательно с блоком питания и благодаря своей большой индуктивности сглаживающий пики потребления блока. Такая схема крайне проста, но неэффективна: если блок питания без коррекции имеет коэффициент мощности 0,65-0,7 (в зависимости от нагрузки), то пассивная коррекция позволяет увеличить его до 0,7-0,75, что на фоне достаточно заметной с точки зрения производителя стоимости мощного дросселя весьма скромный показатель. Впрочем, от пассивной коррекции есть и еще один положительный эффект - дроссель выступает как великолепный фильтр, гасящий высокочастотные помехи от блока питания.

Схема активной коррекции коэффициента мощности - это небольшое электронное устройство, позволяющее достичь почти идеального результата - коэффициент мощности блока с активной коррекцией достигает 0,95-0,98.

Охлаждение блока питания

Так как в блоке питания сравнительно небольших габаритов выделяется значительная мощность, ему требуется активное охлаждение - принудительный обдув греющихся элементов с помощью вентилятора.

Варианты реализации охлаждения довольно сильно разнятся в зависимости от блока. Самый популярный метод - один 80-мм вентилятор, расположенный на задней (внешней) стенке блока питания и вытягивающий теплый воздух наружу. У такого типа охлаждения два серьезных недостатка: во-первых, при таком расположении вентилятора проблематичным становится качественное охлаждение всего объема блока; во-вторых, тепловыделение мощных блоков питания заставляет ставить производительные вентиляторы, что приводит к росту шума.

Самое простое решение проблемы - установка на противоположной стенке блока питания второго такого же вентилятора. Это решение, как правило, используется в недорогих БП благодаря своей дешевизне. Установленный таким образом вентилятор направляет поток воздуха непосредственно на радиаторы транзисторов и диодов блока питания и силовой трансформатор, но при традиционной компоновке блока питания несколько в стороне остается еще один элемент с большим тепловыделением - дроссель групповой стабилизации.

Более эффективна схема со вторым вентилятором на верхней крышке блока (причем он смещается в сторону относительно первого вентилятора), размещенным так, чтобы поток воздуха от него приходился в первую очередь на два самых горячих элемента: радиатор с выходными диодными сборками и дроссель групповой стабилизации. Благодаря эффективному охлаждению этих элементов удается установить достаточно тихоходные вентиляторы, чтобы шум от них не был раздражающим. Такая схема охлаждения обычно применяется в довольно дорогих блоках питания, хотя встречаются и в отдельных моделях среднего ценового диапазона.

И, наконец, наиболее перспективная схема - установка одного 120-мм вентилятора на верхнюю крышку блока питания. Вентилятор с задней стенки при этом убирается вообще, а на стенке делается перфорация для свободного выхода воздуха. Такая схема обеспечивает одновременно и хорошее равномерное охлаждение всех компонентов блока благодаря большому размеру вентилятора, и низкий уровень шума благодаря его большой эффективности (120-мм вентилятор имеет существенно меньшие обороты, чем 80-мм с таким же воздушным потоком, а, следовательно, производит значительно меньше шума). К тому же эта схема дешевле, чем установка двух 80-мм вентиляторов - поэтому блоки с охлаждением одним 120-мм вентилятором становятся все более популярными в самых разных ценовых категориях.

Другая особенность систем охлаждения блоков питания - регулировка скорости вентилятора. Как правило, скорость зависит от температуры внутри блока питания (датчик располагается на радиаторе с диодными сборками или рядом с дросселем групповой стабилизации), но встречаются и блоки, в которых скорость регулируется в зависимости от нагрузки (например, последние модели от InWin).

Качество исполнения терморегулятора также сильно зависит от ценовой категории блока: это может быть просто включенный последовательно с вентилятором терморезистор в самых дешевых блоках и сравнительно серьезная электронная схема в более дорогих. Различается и эффективность регулировки - в тихих дорогих блоках при включении вентилятор может вращаться на минимальной скорости 1000-1200 об/мин, а по мере прогрева блока при необходимости разгоняться до 2500-3000 об/мин, а в младших моделях скорость зачастую меняется в куда более скромных пределах, порядка 2000-2500 об/мин (здесь приведены характерные скорости 80-мм вентиляторов, для блоков со 120-мм моделями они будут существенно меньше). Кроме того, на некоторых моделях блоков, например компании Enermax, встречается и ручная регулировка скорости вращения с помощью обычного переменного резистора.

Также небольшую, но все же заметную роль в охлаждении играет решетка вентилятора. В дорогих моделях вместо штампованной решетки применяют проволочную, на которой, благодаря ее небольшой площади и закругленным краям, поток воздуха от вентилятора производит значительно меньше шума.

Блоки питания стандарта АТХ

из цикла статей "Блоки питания стандарта АТХ"

источник: журнал "Upgrade" # 2 (17) 2004

Используемые в настоящее время в электронной аппаратуре блоки питания (БП) можно разделить на нестабилизированные и стабилизированные. Последние отличаются наличием специальной схемы, поддерживающей выходное напряжение постоянным вне зависимости от колебаний напряжения на входе или мощности нагрузки. В свою очередь, стабилизированные БП можно грубо разделить на два класса по типу используемого стабилизатора: линейные и импульсные.





Последнее изменение этой страницы: 2016-04-07; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.239.242.55 (0.021 с.)