Фотосинтез. Лист как орган фотосинтеза. Функциональная роль пигментов. Экологическая роль фотосинтеза. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Фотосинтез. Лист как орган фотосинтеза. Функциональная роль пигментов. Экологическая роль фотосинтеза.



Фотосинтезирующие организмы: автотрофы и гетеротрофы. Гетеротрофные организмы - не способные к синтезу органических веществ из неорганических и использующие в качестве пищи (источника Е) готовые органические соединения (большинство бактерий, грибов, животных). Автотрофные организмы - способные создавать из неорганических веществ органические, служащие строительным материалом и источником Е. (пигментированные бактерии и зеленые растения): хемосинтезирующие (бактерии) - используют Е, выделяющуюся при окислении некоторых неорганических веществ (например, нитрифицирующие бактерии окисляют аммиак нитриты нитраты); Фотосинтезирующие - используют Е света (зеленые растения) Главным фотосинтезирующим органом высших растения является лист. Строение листа и его функции тесно взаимосвязаны. Листьям нужен источник СО» и вода; они приспособлены к поглощению солнечной Е, есть хлорофилл, выделяется О2 как один из отходов, а полезный продукт - углевод транспортируется в другие части растения и запасается. Лист весьма специализированный орган, удовлетворяющий этим требованиям. Расположение листьев, которые пня перекрывают друг друга способствует фотосинтезу. У эукариот фотосинтез (Фт) происходит в особых органеллах - хлоропластах (Хл) Они рассеяны в цитоплазме, их число От 1 до 100. Двояковыпуклая форма на срезе, в сверху - округлые. Хл образуются из пропластид и состоят: 2 мембраны + строма (бесструктурное содержимое, гель, находятся ферменты + сахара и орган. кислоты). Строма пронизана системой параллельно расположенных элементарных мембран, которые являются продолжением внутренней мембраны. Их называют тилакоидами. Тилакоиды образуют граны Отдельные граны соединены друг с другом ламеллами. В мембранах гран встроены пигменты, улавливающие солнечный ост, и ферменты, синтезирующие АТФ Т. обр. а гранах Хл протекает световая фаза Фт. а в строме - темновая. Основные функции Хл - Фт и синтез специфических белков. Фотосинтетические пигменты: хлорофиллы и каратиноиды. Их роль - поглощение света и превращение сто энергии в химическую энергию Пигменты локализованы в мембранах хлоропластов, хлоропласты обычно располагаются так, чтоб их мембраны находились под прямым углом к источнику света. Хлорофиллы - поглощают красный и сине-фиолетовый свет. Зеленый свет они отражают, потому придают растениям зеленую окраску. Карат иноиды: желтые, оранжевые, красные или коричневые пигменты, которые сильно поглощают в сине-фиолетовой области. Они имеют три максимума поглощения в сине-фиолетовой области спектра, они не только функционируют как дополнительные пигменты, но и защищают хлорофилл от избытка света к от окисления кислородом, выделяющимся при фотосинтезе.

Механизм: Фотосинтез –2 фазы Фт:световая и темновая.

Световая фаза: Видимый свет Хл электрон переходит в возбужденное состояние электрон поднимается на более высокий энергетический уровень присоединяется к иону Н+. восстанавливает его до атома Н +НАДФ (никотинамидадениндинуклиотидфосфат) восстановление до НАДФ-Н2 Одновременно под действием hv фотолиз воды ионы ОН и (Н+) Ионы гидроксила, оставшись без противоионов Н+, отдают свои электроны и превращаются в свободные радикалы ОН, которые, взаимодействуя друг с другом, образуют воду и свободный О2 4 ОН 2 Н2О+О2

Протоны и электроны накапливаются по разные стороны мембраны грана Хл (Р - внутренняя сторона, а Э - наружная) и создают разность потенциалов, когда разность достигает критического уровня, протоны проходят по специальным каналам мембран, в которых находятся ферменты синтезирующие АТФ. Т. Обр. в световой фазе Фт: фотолиз воды с выделением кислорода, восстановление НАДФ до НАДФ+Н2 и синтез АТФ.

Темновая фаза: накопленная в световой фазе Е используется для синтеза моносахаридов из СО2 (поступает из воздуха через устьица) и Н2 (отсоединяется от НАДФ+Н2) путем сложных ферментативных реакций. Не требует прямого участия света, протекает в строме хлоропластов, как на свету, так и в темноте. Коэффициент полезного действия - 60%.

Значение огромно главный процесс, протекающий в биосфере, Е солнца аккумулируется в химических связях органнческих соединений, которые идут на питание всех гетеротрофов. При этом атмосфера обогащается кислородом и очищается от избытка углекислого газа


Газообмен. Показатели дыхательного газообмена Дыхательные пигменты. Дыхание у разных организмов.

Для обеспечения жизнедеятельности между организмом и окружающей средой должен непрерывно происходить газообмен. Аэробные организмы в результате диффузии поглощают кислород (из воды, в которой он растворен, либо из атмосферы) и выделяют углекислоту. Дыхательная поверхность, на которой происходит газообмен, должна быть:

- проницаемой для O2 и CO2;

- тонкой – диффузия эффективна только на небольших расстояниях;

- влажной – эти газы диффундируют в растворе;

- большой – для поддержания достаточной скорости газообмена.

Интенсивность метаболизма растений невысока, кислорода им требуется сравнительно немного. Газообмен осуществляется путём диффузии газов через всю поверхность; у крупных растений для этих целей служат устьица листьев и трещины в коре. Клетки, содержащие хлорофилл, могут потреблять для дыхания только что выработанный ими кислород.

У одноклеточных животных газообмен происходит через клеточную мембрану. Наиболее примитивные многоклеточные – кишечнополостные, плоские черви – также обеспечивают свои потребности в кислороде, поглощая его каждой клеткой, находящейся в контакте со средой.

У более сложных организмов появляется большое количество клеток, не контактирующих со средой, и простая диффузия становится неэффективной. Необходима специальная дыхательная система, которая будет эффективно поглощать кислород и выделять углекислоту. Как правило, эта система оказывается связанной с кровеносной системой, обеспечивающей доставку кислорода тканям и клеткам. Растворимость кислорода в крови составляет 0,2 мл на 100 мл крови, однако наличие дыхательных пигментов способно в десятки и сотни раз увеличить эффективность этого процесса. Наиболее известным дыхательным пигментом является гемоглобин. Рассмотрим некоторые наиболее типичные дыхательные системы.

В тело насекомых воздух попадает через– дыхальца. Они открываются в воздушные полости, от которых отходят– трахеи. Трахеи укреплены хитином и всегда остаются открытыми. В каждом сегменте тела они разветвляются на многочисленные– трахеолы, через которые кислород поступает прямо к тканям; необходимости в его транспортировки кровью нет. Трахеолы заполнены водянистой жидкостью, через неё диффундируют кислород и углекислота. При активной работе мышц жидкость всасывается в ткани, и кислород попадает непосредственно к клеткам уже в газообразном состоянии. Трахейная система дыхания весьма эффективна, однако наличие в дыхательной цепи процесса диффузии ограничивает размеры насекомого (точнее, его толщину). Газообмен у рыб происходит при помощи специальных дыхательных органов – жабр. Каждая жабра поддерживается вертикальным хрящём – жаберной дугой. У костных рыб жаберная дуга состоит из костной ткани. От перегородки, лежащей над жаберной дугой, отходит ряд горизонтальных складок – жаберных лепестков, на каждом из которых образуются вертикальные вторичные лепестки. Свободные края жаберных перегородок вытянуты и работают как откидные клапаны. Когда дно ротовой полости и глотки опускается, давление в них уменьшается, и в жабры через рот и брызгальца устремляется вода. Клапан при этом предотвращает попадание в жабры воды с другой стороны. Многочисленные капилляры, пронизывающие жабры, насыщаются здесь кислородом и объединяются в жаберные артерии, выносящие из жабр богатую кислородом кровь. Отметим, что дыхательная система костных рыб более совершенна, чем у рыб хрящевых, так как у костных рыб жабры имеют бóльшую площадь поверхности, а движение крови навстречу току воды обеспечивает более эффективный обмен газов. Амфибии получают кислород тремя способами: через кожу, рот и лёгкие. При кожном и ротовом дыхании газ поглощается влажным эпителием, выстилающим кожу или ротовую полость. Заметные глазу движения горла лягушки – это именно ротовое дыхание. Поступающий в рот воздух может также через гортань, трахею и бронхи попадать в лёгкие. Лёгкие у лягушки представляют собой пару полых мешков, стенки которых образуют многочисленные складки, пронизанные кровеносными капиллярами. В результате мышечных сокращений происходит вдох и выдох, лёгкие наполняются воздухом, кислород из него поступает в кровь.

У высших форм позвоночных кожное дыхание практически отсутствует, основным дыхательным органом становятся лёгкие. Они имеют гораздо большее количество складок, чем лёгкие амфибий. У птиц появились также воздушные мешки, благодаря которым через лёгкие и во время вдоха, и во время выдоха проходит богатый кислородом воздух; это увеличивает эффективность газообмена. У млекопитающих воздух поступает через ноздри; небольшие волоски задерживают посторонние частицы. Из носа воздух попадает в глотку, а затем в гортань. Хрящевой клапан (надгортанник) защищает дыхательные пути от попадания в них пищи. В полости гортани находятся голосовые связки; когда выдыхаемый воздух проходит сквозь голосовую щель, возникают звуковые волны. С изменением натяжения связок меняется высота издаваемого звука.

Из гортани воздух попадает в трубковидную трахею На нижнем конце трахея разветвляется на два бронха. Бронхи разделяются на более тонкие бронхиолы; у самых маленьких из них (диаметром 1 мм и меньше) хрящевая ткань отсутствует. Бронхиолы разветвляются, в свою очередь, на многочисленные альвеолярные ходы, заканчивающиеся мешочками, выстланными соединительной тканью, – альвеолами. В лёгких млекопитающего могут быть сотни миллионов альвеол.

Основными показателями газообмена является использование кислорода, выделение углекислого газа и дыхательный коэффициент. Дыхательный коэффициент. Величина продукции СО2 определяется интенсивностью метаболических процессов и видом веществ (углеводы, жиры, белки), которые окисляются в организме. Нормальная скорость образования CO2 (VCO2) у здорового взрослого человека составляет 200 мл в 1 мин, т.е. около 80% скорости поглощения.

Эволюция дыхательной системы происходила в направлении постепенного расчленения легкого на более мелкие полости, так что строение легких у рептилий, птиц и млекопитающих постепенно усложняется. У ряда рептилий (например у хамелеона) легкие снабжены придаточными воздушными мешками, которые раздуваются при наполнении воздухом. Животные принимают угрожающий вид - это играет роль защитного приспособления для отпугивания хищников. Легкие птиц также имеют воздушные мешки, распространяющиеся по всему телу. Благодаря им воздух может проходить через легкое и полностью обновляться при каждом вдохе. У птиц при полете существует двойное дыхание, когда воздух в легких насыщается кислородом при вдохе и выдохе. Кроме того, воздушные мешки играют роль мехов, продувающих воздух через легкие за счет сокращения летательных мышц.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-04-07; просмотров: 747; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.102.178 (0.007 с.)